Contracting planar graphs efficiently in parallel

  • Martin Fürer
  • Balaji Raghavachari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 560)


We describe a new technique for contracting planar graphs which generalizes the tree contraction technique introduced by Miller and Reif. Our algorithm contracts a given planar graph in O(log n) rounds to one with a constant number of vertices. We use this technique to give an efficient NC solution to the following problem. It is known that a planar graph with n≥ 3 vertices has a straight-line embedding on an n−2 by n−2 grid. We show that such an embedding is computable in O(log2n log*n) time using O(n) processors on a CREW PRAM.

General Terms

Algorithms Theory 

Additional Keywords and Phrases

Planar graphs Fáry embeddings Parallel algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Fáry, On Straight Line Representation of Planar Graphs, Acta Sci. Math. Szeged 11 (1948) 229–233.Google Scholar
  2. 2.
    H. de Fraysseix, J. Pach and R. Pollack, Small sets supporting Fáry embeddings of planar graphs, Proc. 20th ACM STOC (1988) 426–433.Google Scholar
  3. 3.
    A.V. Goldberg, S.A. Plotkin and G.E. Shannon, Parallel Symmetry-Breaking in Sparse Graphs, Proc. 19th ACM STOC (1987) 315–324.Google Scholar
  4. 4.
    G.R. Kampen, Orienting Planar Graphs, Disc. Math. 14 (1976) 337–341.CrossRefGoogle Scholar
  5. 5.
    G. Miller and J. Reif, Parallel Tree Contraction and its Application, 26th Annual Symp. on Foundations of Comp. Sci. (1985) 478–489. Also: Parallel Tree Contraction, Part I: Fundamentals, in Advances in Computing Research 5 (1989) F.P. Preparata editor, JAI Press, 47–72.Google Scholar
  6. 6.
    C.A. Phillips, Parallel Graph Contraction, Proc. of the 1989 Symp. on Parallel Algorithms and Architectures (1989) 148–157.Google Scholar
  7. 7.
    V. Ramachandran and J. Reif, An Optimal Parallel Algorithm for Graph Planarity, 30th Annual Symp. on Foundations of Comp. Sci. (1989) 282–287.Google Scholar
  8. 8.
    P. Rosenstiehl and R.E. Tarjan, Rectilinear planar layouts and bipolar orientations of planar graphs, Disc. Comp. Geom. 1 (1986) 343–353.Google Scholar
  9. 9.
    W. Schnyder, Planar Graphs and Poset Dimension, Order 5 (1989) 323–343.CrossRefGoogle Scholar
  10. 10.
    W. Schnyder, Embedding Planar Graphs on the Grid, Proc. First ACM-SIAM Symp. on Discrete Alg. (1990) 138–148.Google Scholar
  11. 11.
    S.K. Stein, Convex Maps, Proc. Amer. Math. Soc. 2 (1951) 464–466.Google Scholar
  12. 12.
    W.T. Tutte, A Theorem on Planar Graphs, Trans. Am. Math. Soc. 82 (1956) 99–116.Google Scholar
  13. 13.
    K. Wagner, Bemerkungen zum Vierfarbenproblem, Jahresbericht. Deutsch. Math.-Verein 46 (1936) 26–32.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Martin Fürer
    • 1
  • Balaji Raghavachari
    • 1
  1. 1.Computer Science DepartmentPennsylvania State UniversityUniversity Park

Personalised recommendations