Advertisement

Quantum chaos and Sabine's law of reverberation in ergodic rooms

  • Olivier Legrand
  • Didier Sornette
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 392)

Abstract

We investigate the standard acoustical problem of sound decay in a room, due to a small absorption at the walls, both in the geometrical approximation (1) and for the full wave problem (2). The classical universal Sabine's law of reverberation is shown to rely on ergodic properties of both geometrical billiard-like trajectories (1) and eigenmodes (2). A paradigm of an ergodic auditorium is used to test numerically these ideas: a two-dimensional (2-D) room with the shape of a Stadium. In both approaches, Sabine's law for the characteristic reverberation time is verified with good accuracy.

Keywords

Periodic Orbit Decay Constant Ergodic Theorem Ergodic Property Hard Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. C. Sabine, Collected Papers on Acoustics (Harvard University Press, Cambridge, 1923), reprinted by Dover, New York, 1964).Google Scholar
  2. [2]
    M. R. Schroeder and D. Hackman, Acustica 45, 269–273 (1980).Google Scholar
  3. [3]
    E.N. Gilbert, J. Acoust. Soc. Am. 69, 178–184 (1981).Google Scholar
  4. [4]
    E.N. Gilbert, Acustica 66, 275–280 and 290-292 (1988).Google Scholar
  5. [5]
    E.N. Gilbert, J. Acoust. Soc. Am. 83, 1804–1808 (1988).Google Scholar
  6. [6]
    H. Kuttruff, Acustica 23, 238 (1970).Google Scholar
  7. [7]
    H. Kuttruff, Acustica 24, 356 (1971).Google Scholar
  8. [8]
    W. B. Joyce, J. Acoust. Soc. Am. 58, 643 (1975).Google Scholar
  9. [9]
    W. B. Joyce, J. Acoust. Soc. Am. 64, 1429 (1978).Google Scholar
  10. [10]
    O. Legrand and D. Sornette, J. Acoust. Soc. Am. 88 865 (1990).Google Scholar
  11. [11]
    O. Legrand and D. Sornette, Europhys. Lett. 11, 583 (1990); Phys. Rev. Lett. 66, 2172 (1991).Google Scholar
  12. [12]
    M. V. Berry, J. Phys. A 10, 2083 (1977)Google Scholar
  13. [13]
    A. Voros, in Stochastic Behavior in Classical and Quantum Hamiltonian Systems, edited by G. Casati and J. Ford, Lecture notes in Physics 93 (Springer-Verlag, Berlin and New York, 1979).Google Scholar
  14. [14]
    E. J. Heller, Phys. Rev. Lett. 53, 1515 (1984).CrossRefGoogle Scholar
  15. [15]
    E. B. Bogomolny, Physica (Amsterdam) 31D, 169 (1988).Google Scholar
  16. [16]
    O. Legrand andd D. Sornette, Physica (Amsterdam) 44D, 229 (1990).Google Scholar
  17. [17]
    K. Schuster and E. Waetzmann, Ann. Phys., V, 1 671 (1929).Google Scholar
  18. [18]
    E.T. Paris, Philos. Mag. V, 489 (1928).Google Scholar
  19. [19]
    F. H. van den Dungen, Acoustique des Salles, Paris (1934).Google Scholar
  20. [20]
    P. M. Morse and R. H. Bolt, Rev. Mod. Phys. 16, 69–150 (1944).CrossRefGoogle Scholar
  21. [21]
    A.I. Schnirelman, Usp. Mat. Nauk 29, 181 (1974); S. Zelditch, Duke Math. J. 55, 919 (1987); Y. Colin de Verdiére, Commun. Math. Phys. 102, 497 (1985).Google Scholar
  22. [22]
    P. W. O'Connor and E. J. Heller, Phys. Rev. Lett. 61, 2288 (1989).CrossRefGoogle Scholar
  23. [23]
    A. M. Ozorio de Almeida, Hamiltonian Systems: Chaos and Quantization (Cambridge University Press, 1988).Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Olivier Legrand
    • 1
  • Didier Sornette
    • 1
  1. 1.Laboratoire de Physique de la Matière Condensée, CNRS URA 190Université de Nice-Sophia AntipolisNice CedexFrance

Personalised recommendations