The post office problem for fuzzy point sets

  • Franz Aurenhammer
  • Gerd Stöckl
  • Emo Welzl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 553)


The post-office problem for n point sites in the plane (determine which site is closest to a later specified query point) is generalized to the situation when the residence of each site is uncertain and it is described via uniform distribution within a disk. Two probabilistic concepts of neighborhood — expected closest site and probably closest site — are discussed and the resulting Voronoi diagrams are investigated from a combinatorial and computational point of view.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aurenhammer, F. Voronoi diagrams — a survey of a fundamental geometric data structure. ACM Computing Surveys, to appear. Also available: Rep. 90-09, Institut für Informatik, FU Berlin, Germany.Google Scholar
  2. [2]
    Aurenhammer, F. Power diagrams: properties, algorithms, and applications. SIAM J. Computing 16 (1987), 78–96.Google Scholar
  3. [3]
    Chazelle, B., Cole R., Preparata, F.P., Yap, C.K. New upper bounds for neighbor searching. Information and Control 68 (1986), 105–124.Google Scholar
  4. [4]
    Edelsbrunner, H., Guibas, L.J., Stolfi, J. Optimal point location in a monotone subdivision. SIAM J. Computing 15 (1986), 317–340.Google Scholar
  5. [5]
    Edelsbrunner H., Maurer, M.A. Finding extreme points in three dimensions and solving the post-office problem in the plane. Inf. Process. Lett. 21 (1985), 39–47.Google Scholar
  6. [6]
    Fortune, S. A sweepline algorithm for Voronoi diagrams. Algorithmica 2 (1987), 153–174.CrossRefGoogle Scholar
  7. [7]
    Kirkpatrick, D. Optimal search in planar subdivisions. SIAM J. Computing 12 (1983), 28–35.CrossRefGoogle Scholar
  8. [8]
    Klein, R. Concrete and Abstract Voronoi Diagrams. Springer LNCS 400, 1989.Google Scholar
  9. [9]
    Knuth, D.E. The Art of Computer Programming, Vol III: Searching and Sorting. Addison-Wesley, 1973.Google Scholar
  10. [10]
    Mehlhorn, K., Meiser, S., O'Dunlaing, C. On the construction of abstract Voronoi diagrams. Discrete Comput. Geometry, to appear.Google Scholar
  11. [11]
    Shamos, M.I. Geometric complexity. Proc. 7th Ann. ACM Symp. STOC (1987), 224–233.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Franz Aurenhammer
    • 1
  • Gerd Stöckl
    • 2
  • Emo Welzl
    • 1
  1. 1.Institut für Informatik, Fachbereich MathematikFreie Universität BerlinBerlin 33Germany
  2. 2.Institute für InformationsverarbeitungTechnische Universität GrazGrazAustria

Personalised recommendations