Knowledge packets and knowledge packet structures

  • Ipke Wachsmuth
  • Barbara Gängler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 546)


Knowledge Base Access Condition Local Consistency Knowledge Element Background Knowledge Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dahlgren, K. (1985): The cognitive structure of social categories. Cognitive Science 9(3), 379–398Google Scholar
  2. Feigenbaum, E.A. (1977): The art of artificial intelligence: themes and case studies of knowledge engineering. Proc. 5th Int. Joint Conf. on Artificial Intelligence (IJCAI-77), Cambridge, MAGoogle Scholar
  3. Fodor, J.A. (1983): The Modularity of Mind. MIT Press, Cambridge, MAGoogle Scholar
  4. Gängler, B., Wachsmuth, I. (1991): Antwortgenerierung, flexible Wortwahl und elaborative Inferenzen — ein Regelinventar für LEU/2. In: Klose, G., Lang, E., Pirlein, T. (eds.): Die Ontotogie und Axiomatik der Wissensbasis von LEU/2. IWBS-Report 171, IBM Deutschland, Stuttgart/HeidelbergGoogle Scholar
  5. Garfield, J.L. (ed.) (1987): Modularity in Knowledge Representation and Natural Language Understanding. MIT Press, Cambridge, MAGoogle Scholar
  6. Grosz, B., Sidner, C. (1986): Attention, intentions and the structure of discourse. Computational Linguistics 12, 175–204Google Scholar
  7. Gust, H. (1986): Strukturiertes Wissen als Grundlage für Sprachverstehensprozesse. LDV-Forum 4(2), 9–14Google Scholar
  8. Hendrix, G.G. (1979): Encoding knowledge in partitioned networks. In: Findler, N.V. (ed.): Associative Networks — Representation and Use of Knowledge by Computers. Academic Press, New York, pp. 51–92Google Scholar
  9. Kowalski, R. (1975): A proof procedure using connection graphs. Journal of the ACM 22(4), 572–595CrossRefGoogle Scholar
  10. Lenat, D.B., Feigenbaum, E.A. (1987): On the thresholds of knowledge. Proc. 10th Int. Joint Conf. on Artificial Intelligence (IJCAI-87), Milano, pp. 1173–1182Google Scholar
  11. Levesque, H.J., Brachman, R.J. (1986): Knowledge level interfaces to information systems. In: Brodie, M.L., Mylopoulus, J. (eds.): On Knowledge Base Management Systems. Springer-Verlag, New York, Berlin, Heidelberg, pp. 13–54Google Scholar
  12. Lifschitz, V. (1989): Benchmark problems for formal nonmonotonic reasoning, version 2.00. In: Reinfrank, M., deKleer, J., Ginsberg, M.L., Sandevall, E. (eds.): Non-Monotonic Reasoning. Proc. 2nd Int. Workshop, Springer-Verlag, Berlin, Heidelberg, New York, pp. 202–219Google Scholar
  13. Minsky, M. (1981): A framework for representing knowledge. In: Haugeland, J. (ed.): Mind Design, MIT Press, Cambridge, MA, pp. 95–128Google Scholar
  14. Nagl, M. (1990): Softwaretechnik: Methodisches Programmieren im Großen. Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  15. Newell, A., Simon, H.A. (1972): Human Problem Solving. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  16. Newell, A. (1982): The knowledge level. Artificial Intelligence 18(1), 1–20Google Scholar
  17. Parnas, D.L. (1972): On the criteria to be used in decomposing systems into modules. Communications of the ACM 15(12), 1053–1058Google Scholar
  18. Pletat, U. (1991): Modularizing Knowledge in LLILOG-IWBS-Report 173, IBM Deutschland, Stuttgart/HeidelbergGoogle Scholar
  19. Post, T.R., Behr, M.J., Lesh, R., Wachsmuth, I. (1985): Selected results from the rational number project. Proc. 9th Int. Conf. for the Psychology of Mathematics Education, Utrecht, pp. 342–351Google Scholar
  20. Prerau, D.S., Gunderson, A.S., Reinke, R.E., Adler, M.R. (1990): Maintainability techniques in developing large expert systems. IEEE Expert June 1990, 71–79Google Scholar
  21. Rosch, E. (1978): Principles of categorization. In: Rosch, E., Lloyd, B.B. (eds.): Cognition and Categorization. Erlbaum, Hillsdale, NJGoogle Scholar
  22. Scha, R.J.H., Bruce, W.C., Polanyi, C. (1987): Discourse understanding. In: Shapiro, S.C., Eckroth, D., Vallasi, G.A. (eds.): Encyclopedia of Artificial Intelligence, Vol. 1. John Wiley and Sons, New York, pp. 233–245Google Scholar
  23. Wachsmuth, I. (1985): LAKOS — Ein Modell der Wissensrepräsentation zur Erklärung kognitiven Verhaltens. In: Mandl, H., Fischer, P.M. (eds.): Lernen im Dialog mit dem Computer. Urban and Schwarzenberg, MünchenGoogle Scholar
  24. Wachsmuth, I. (1987): On Structuring Domain-Specific Knowledge. LILOG-Report 12, IBM Deutschland, StuttgartGoogle Scholar
  25. Wachsmuth, I. (1989a): Modularisierung wissensbasierter Systeme — Rahmenentwurf für ein Forschungs-programm im Bereich Wissensbasierte Systeme/Künstliche Intelligenz. University of Bielefeld (MOSYS-Report 1), BielefeldGoogle Scholar
  26. Wachsmuth, I. (1989b): Zur intelligenten Organisation von Wissensbeständen in künstlichen Systemen. IWBS-Report 91, IBM Deutschland, Stuttgart/HeidelbergGoogle Scholar
  27. Wachsmuth, I., Meyer-Fujara, J. (1990): Addressing the retrieval problem in large knowledge bases. Proc. 3rd Conf. Computational Intelligence (CI-90), Milano (Summary). Full paper: University of Bielefeld (MOSYS-Report 3), BielefeldGoogle Scholar
  28. Wos, L., Overbeek, R., Lusk, E., Boyle, J. (1984): Automated Reasoning — Introduction and Applications. Prentice Hall, Englewood Cliffs, NJGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Ipke Wachsmuth
  • Barbara Gängler

There are no affiliations available

Personalised recommendations