Some constructions in rings of differential polynomials

  • Giovanni Gallo
  • Bhubaneswar Mishra
  • Francois Ollivier
Submitted Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 539)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Carrá Ferro, Gröbner Bases and Differential Ideals, LNCS, Proceedings of AAEC-C5, 129–140, Springer-Verlag 1987.Google Scholar
  2. [2]
    G. Carrá Ferro, W.J. Sitt On Term-Orderings and Rankings, preprint, 1990.Google Scholar
  3. [3]
    F. Castro, Théorème de division pour les opérateurs différentiels et calcul des multiplicités, thèse de troisième cycle. Paris VII, Oct. 1984.Google Scholar
  4. [4]
    A. Galligo, Some Algorithmic Questions on Ideals of Differential Operators LNCS, Proceedings EUROCAL 85, 413–421, Springer-Verlag 1985.Google Scholar
  5. [5]
    G. Gallo and B. Mishra, Efficient Algorithms and Bounds for Wu-Ritt Characteristic Sets, in Proc. of MEGA 90, Castiglioncello, Italy, 1990, Birkhauser.Google Scholar
  6. [6]
    R.M. Grassl, Polynomials in Denumerable Indeterminates, Pacif. Jour.of Math, 97 (1981), 2, 415–423.Google Scholar
  7. [7]
    A.P. Hillman and R.M. Grassl, Slicing Skew-tableau Frames, Europ.Jour. of Combin. (1982), 3, 143–151.Google Scholar
  8. [8]
    M. Janet, Leçons sur le Systèmes d'équations aux Dérivées Partielles, Gauthier-Villars, Paris, 1929.Google Scholar
  9. [9]
    I. Kaplansky, An Introduction to Differential Algebra, Hermann 1957.Google Scholar
  10. [10]
    E.R. Kolchin, On the Basis Theorem for Differential Systems, Trans. AMS, 52, 115–127, 1942.Google Scholar
  11. [11]
    E.R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York 1973.Google Scholar
  12. [12]
    H. Levi, On the Structure of Differential Polynomials and on their Theory of Ideals, Trans. AMS, 51, 326–365, 1942.Google Scholar
  13. [13]
    F.S. Macaulay, Algebraic Theory of Modular Systems, Cambridge University Press, 1916.Google Scholar
  14. [14]
    D.G. Mead, Differential Ideals, Proc. AMS 6 (1955), 420–432.Google Scholar
  15. [15]
    H.M. Möller and F. Mora, New Constructive Methods in Classical Ideal Theory, Journal of Algebra 100 (1986).Google Scholar
  16. [16]
    F. Ollivier, Le problème de l'identifiabilité structurelle globale, Doctoral Dissertation, Paris 1990.Google Scholar
  17. [17]
    F. Ollivier, Standard bases of Differential ideals, in Proc. AAECC 8, Tokyo, Japan 1990, Springer Verlag.Google Scholar
  18. [18]
    F. Ollivier, Canonical bases: relation with standard bases, finiteness conditions and Application to tame automorphisms in Proc. MEGA '90, Castinglioncello, Italy, 1990, Birkhauser.Google Scholar
  19. [19]
    J.F. Pommaret, Systems of Partial Differential Equations and Lie Pseudo-Groups, Gordon and Breach, New York 1978.Google Scholar
  20. [20]
    F. Riquier, Les Systèmes d'équations aux dérivées partielles, Gauthier-Villars, Paris 1910.Google Scholar
  21. [21]
    J.F. Ritt, Differential Equations from the Algebraic Standpoint AMS Coloq. Publ. 14, New York 1932.Google Scholar
  22. [22]
    J.F. Ritt, Differential Algebra, AMS Colloq. Publ. 33, New York 1950.Google Scholar
  23. [23]
    L. Robbiano, On the Theory of Graded Structures, Journal of Symbolic Computation 2, 1986.Google Scholar
  24. [24]
    A. Seidenberg, An Elimination Theory for Differential Algebra, Univ. of California at Berkeley, Publ. in Math. 3, 2 31–65, 1956.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Giovanni Gallo
    • 1
  • Bhubaneswar Mishra
    • 1
  • Francois Ollivier
    • 2
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNYUSA
  2. 2.Laboratoire d'InformatiqueEcole PolytechniquePalaiseau CedexFrance

Personalised recommendations