The spatial locality and a spatial indexing method by dynamic clustering in hypermap system

  • Li Ki-Joune
  • Laurini Robert
Access Methods
Part of the Lecture Notes in Computer Science book series (LNCS, volume 525)


The rapid accessibility of information is an important requirement of the hypermap systems or the geographical informations systems. But the massive volumes of data oblige us to store it in secondary memory which greatly slows down the access time. Thus the indexing technique, which determines the way of secondary memory access, is an essential point in hypermap systems. There are several researches on spatial indexing techniques, but due to the lack of comparative studies which must be based on the analysis of the nature of the spatial data, it is difficult to say that one is better than another.

In this paper, we introduce a parameter called hierarchical variance. It tells us the degree of spatial locality, which is an important characteristic of spatial data. There is a strong relationship between this parameter and the hit ratio. We compare the existing spatial indexing methods from this point of view, and propose a new spatial indexing method, which is also a variation of R-tree and is based on the spatial locality property by using the dynamic clustering method. This method reduces hierarchical variance, that is, it increases the hit ratio.


Spatial Locality Spatial Data Dynamic Cluster Spatial Indexing Indexing Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. [1]
    N. Bechmann, H. Kriegle, R. Schneider and B. Seeger, "The R*-tree: An Efficient and Robust Access Method for Points and Rectangles", Proc. ACM SIGMOD Conf., May 1990Google Scholar
  2. [2]
    K. Bennis and M. Freville, "Méthode de construction d'un indexe spatial R+-tree pour l'organisation des données géométriques", 6-ième journées de Base de Données Avancées (BD3), Montpellier, France, 1990Google Scholar
  3. [3]
    J.L. Bently and J.H. Friedmand, "Data Structure for Range Searching", ACM Computing Survey, Vol.11 No4, 1979Google Scholar
  4. [4]
    V. Benzaken and C. Delobel, "Dynamic Clustering Strategies in the O2 Object Oriented Database System", Altair Techn. Report 34-89, August, 1989Google Scholar
  5. [5]
    J. Conklin, "Hypertext: An Introduction and Survey", IEEE Computer, Vol.18 No.9, 1987Google Scholar
  6. [6]
    D. Diday et al., Elément d'analyse de données, Dunod, Paris, 1982Google Scholar
  7. [7]
    C. Faloutsos and W. Rego, "Tri-cell: A Data Structure for Spatial Objects", Information System, Vol.14 No.2, 1989Google Scholar
  8. [8]
    D. Ferrari, Computer Systems Performance Evaluation, Prentice-Hall, N.J. 1978Google Scholar
  9. [9]
    D. Green, "An Implementation and Performance Analysis of Spatial Data Access Methods", Proc. IEEE 5th Conf. On Data Eng. L.A., 1989Google Scholar
  10. [10]
    O. Guenther, "The Design of Cell Tree: An Object Oriented Index Structure for Geometric Databases", Proc. IEEE 5th Conf. On Data Eng. L.A. 1989Google Scholar
  11. [11]
    O. Guenther and A. Buchmann, "Research Issues In Spatial Databases", ACM SIGMOD, Vol.19, No.4, 1990Google Scholar
  12. [12]
    A. Guttman, "R-tree: Dynamic Index Structure for Spatial Searching", Proc. ACM SIGMOD Conf., Boston, 1984Google Scholar
  13. [13]
    H.V. Jagadish, "Linear Clustering of Objects with Multiple Attributes", Proc. ACM SIGMOD Conf., Atlantic City, 1990Google Scholar
  14. [14]
    W. Kim, J. Banerjee and H.T. Chou, "Composite Object Support in an Object-Oriented Database System", Proc. OOPSLA'87, 1987Google Scholar
  15. [15]
    R. Laurini and D. Thompson, Fundamentals of Spatial Information Systems, Academic Press, N.Y., 1991Google Scholar
  16. [16]
    R. Laurini and F. Milleret-Raffort, "Principles of Geomatic Hypermaps", Proc. 4th Symp. Spatial Data Handling, Vol.2, Zurich, 1990Google Scholar
  17. [17]
    K.J. Li And R. Laurini, "Structuration Orientée Objet des Hypercartes et Bibliothèques de Cartes", Contract Report/2, INSA 8-098, INSA de Lyon, Labo. Informatique Appliquée, Lyon, France, 1990Google Scholar
  18. [18]
    J. Nievergelt, H. Hiterberger. and K.C. Sevick, "The Grid File: An Adaptable Symmetric Multikey File Structure", ACM TODS, Vol.9 No 1, 1984Google Scholar
  19. [19]
    J.A. Orenstein, "Spatial Query Processing in an Object Oriented Database System", Proc. ACM SIGMOD Conf., Washington, 1986Google Scholar
  20. [20]
    H. Samet, The Design and Analysis of Spatial Data Structure, Addison-Wesley, N.Y., 1989Google Scholar
  21. [21]
    T. Sellis, N. Roussopoulos and C. Faloutsos, "The R+-tree: Dynamic Index for Multidimensional Objects", Proc. 13th VLDB Conf. Brighton, 1987Google Scholar
  22. [22]
    M. Tamminen, "The EXCELL Method for Efficient Geometric Access to Data", Acta Polytech. Scand. Mathematics and Computer Science; Series No.34, Helsinki, 1981Google Scholar
  23. [23]
    C.D. Tomlin, Geographical Information Systems and Cartographic Modeling, Prentice-Hall, N.J., 1990Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Li Ki-Joune
    • 1
  • Laurini Robert
    • 1
  1. 1.Laboratoire d'Informatique Appliquée INSA de LyonVilleurbanneFrance

Personalised recommendations