EUROCODE '90 pp 337-349 | Cite as

Coding and modulation for the gaussian channel, in the absence or in the presence of fluctuations

Codage Et Modulation Pour Le Canal Gaussien, Sans Ou Avec Fluctuations

  • Gérard Battail
  • Hélio Magalhães de Olivieira
  • Zhang Weidong
Section 7 Modulation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 514)

Abstract

Looking for systems which combine coding and multilevel modulation whose Euclidean distance distribution is close to that which results in the average from random coding, we consider the combination of an MDS code over a large-size alphabet and a one-to-one mapping of the alphabet into a symmetric constellation e.g., phase modulation. Its performance in the presence of additive Gaussian noise can be predicted from that of random coding, provided the signal-to-noise ratio is small enough. The results exhibit the sphere hardening phenomenon whether or not amplitude fluctuations are present. Weighted demodulator output and soft decoding should be effected in order to achieve this performance. Such decoding can be done in principle according to previous works by Fang and Battail. A prohibitive complexity can be avoided only at the expense of strict optimality.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. BATTAIL, Construction explicite de bons codes longs, Annales Télécommunic., vol. 44, no 7–8, July-August 1989, pp. 392–404Google Scholar
  2. [2]
    G. UNGERBOECK, Channel coding with multilevel/phase signals, IEEE Trans. on Inf. Th., vol. IT-28, no 1, Jan. 1982, pp. 55–67CrossRefGoogle Scholar
  3. [3]
    K.-M. CHEUNG, More on the decoder error probability for Reed-Solomon codes, IEEE Trans. on Inf. Th., vol. 35, no 4, July 1989, pp. 895–900CrossRefGoogle Scholar
  4. [4]
    H. MAGALHAES de OLIVEIRA and G. BATTAIL, A capacity theorem for lattice codes on Gaussian channels, SBT/IEEE International Telecommunications Conference, Rio de Janeiro, Brazil, 3–6 Sept. 1990Google Scholar
  5. [5]
    C.E. SHANNON, Probability of error for optimal codes in a Gaussian channel, BSTJ, vol 38, no 3, May 1959, pp. 611–656Google Scholar
  6. [6]
    G. BATTAIL, Décodage pondéré optimal des codes linéaires en blocs I.-Emploi simplifié du diagramme du treillis, Annales Télécommunic., vol. 38, no 11–12, Nov.–Dec. 1983, pp. 443–459Google Scholar
  7. [7]
    G. BATTAIL and J. FANG, Décodage pondéré optimal des codes linéaires en blocs II. — Analyse et résultats de simulation, Annales Télécommunic., vol. 41, no 11–12, Nov.–Dec. 1986, pp. 580–604Google Scholar
  8. [8]
    J. FANG, Décodage pondéré des codes en blocs et quelques sujets sur la complexité du décodage, PhD Thesis, ENST, 18 March 1987Google Scholar
  9. [9]
    R.M. ROTH and A. LEMPEL, On MDS codes via Cauchy matrices, IEEE Trans. on Inf. Th., vol. 35, no 6, Nov. 1989, pp. 1314–1319CrossRefGoogle Scholar
  10. [10]
    I.S. GRADSHTEYN and I.M. RYZHIK, Tables of integrals, series, and products, Academic Press, 4-th edition, 1965Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Gérard Battail
    • 1
  • Hélio Magalhães de Olivieira
    • 1
  • Zhang Weidong
    • 1
  1. 1.Département Communications (also URA 820 of C.N.R.S.)Ecole Nationale Supérieure des TélécommunicationsPARIS CEDEX 13France

Personalised recommendations