Advertisement

Binary covering codes and high speed data transmission

  • A. R. Calderbank
Section 7 Modulation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 514)

Abstract

There has been a great deal of recent interest in the covering radius of binary codes. We shall describe how good covering codes can be used to make high speed data transmission more reliable.

Keywords

Average Power Signaling Scheme Continuous Approximation Integer Lattice Fundamental Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. R. Berlekamp and L. R. Welch, Weight distributions of the cosets of the [32,6] Reed-Muller code, IEEE Trans. Inform. Theory, vol. IT-18, 1972, 203–207.CrossRefGoogle Scholar
  2. [2]
    A. R. Calderbank and L. H. Ozarow, Non-equiprobable signaling on the Gaussian channel, IEEE Trans. Inform. Theory, vol. IT-36, 1990, 726–740.CrossRefGoogle Scholar
  3. [3]
    J. H. Conway and N. J. A. Sloane, “A fast encoding method for lattice codes and quantizers,” IEEE Trans. Inform. Theory, vol. IT-29, 1983, 820–824.CrossRefGoogle Scholar
  4. [4]
    J. H. Conway and N. J. A. Sloane, Sphere packings, Lattices, and Groups, Springer-Verlag, New York, 1988.Google Scholar
  5. [5]
    G. D. Forney, Jr., Coset codes — Part I: Introduction and geometrical classification, IEEE Trans. Inform. Theory, vol. IT-34, 1988, 1123–1151.CrossRefGoogle Scholar
  6. [6]
    G. D. Forney, Jr., “Multidimensional constellations — Part II: Voronoi constellations,” IEEE J. Select. Areas Commun., vol. SAC-7, 1989, 941–958.CrossRefGoogle Scholar
  7. [7]
    G. D. Forney, Jr. and L. F. Wei, Multidimensional signal constellations — Part I: Introduction, figures of merit, and generalized cross constellations, IEEE J. Select Areas Commun., vol. SAC-7, 1989, 877–892.CrossRefGoogle Scholar
  8. [8]
    N. J. A. Sloane and R. J. Dick, On the enumeration of cosets of first order Reed-Muller codes, Proceedings IEEE International Conference on Communications, Montreal, June 1971, Vol. 7, p. 36–2 to 36-6.Google Scholar
  9. [9]
    L. F. Wei, Trellis coded modulation with multidimensional constellations, IEEE Trans. Inform. Theory, vol. IT-33, 1987, 483–501.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • A. R. Calderbank
    • 1
  1. 1.AT&T Bell LaboratoriesMathematical Sciences Research CenterMurray Hill

Personalised recommendations