EUROCODE '90 pp 309-317 | Cite as

Minimum codeword length and redundancy of Huffman codes

  • Renato M. Capocelli
  • Alfredo De Santis
Section 6 Information Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 514)

Abstract

A tight upper bound on the redundancy r of Huffman codes, in terms of the minimum codeword length l, l≥1, is provided. The bound is a strictly decreasing function of l. For large l it yields rl−log(2l+1−1)+1+β+O(2−2l), where β≈0.0860.

By using this result we improve Gallager's bound on the redundancy when only the most likely source probability p1 is known.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. G. Gallager, “Variation on a theme by Huffman,” IEEE Trans. on Inform. Theory, vol. IT-24, no. 6, pp. 668–674, Nov. 1978.CrossRefGoogle Scholar
  2. [2]
    R. M. Capocelli, R. Giancarlo and I. J. Taneja, “Bounds on the redundancy of Huffman codes,” IEEE Trans. on Inform. Theory, vol. IT-32, no. 6, pp. 854–857, Nov. 1986.CrossRefGoogle Scholar
  3. [3]
    R. M. Capocelli and A. De Santis, “Tight upper bounds on the redundancy of Huffman codes,” IEEE Trans. Inform. Theory, vol. 35, n. 5, pp. 1084–1091, Sept. 1989.CrossRefGoogle Scholar
  4. [4]
    R. M. Capocelli and A. De Santis, “Tight bounds on the redundancy of Huffman codes,” IBM Research Report RC-14154.Google Scholar
  5. [5]
    R. M. Capocelli and A. De Santis, “A note on D-ary Huffman codes,” to appear on IEEE Trans. Inform. Theory, Jan. 1991.Google Scholar
  6. [6]
    R. M. Capocelli and A. De Santis, “New bounds on the redundancy of Huffman codes,” to appear on IEEE Trans. Inform. Theory.Google Scholar
  7. [7]
    D. A. Huffman, “A method for the construction of minimum redundancy codes,” Proc. IRE, vol. 40, pp. 1098–1101, 1952.Google Scholar
  8. [8]
    O. Johnsen, “On the redundancy of Huffman codes,”, IEEE Trans. on Inform. Theory, vol. IT-26, no. 2, pp. 220–222, Mar. 1980.CrossRefGoogle Scholar
  9. [9]
    B. L. Montgomery and B. V. K. Vijaya Kumar, “On the average codeword length of optimal binary codes for extended sources,” IEEE Trans. on Inform. Theory, vol. IT-33, no. 2, pp. 293–296, Mar. 1987.CrossRefGoogle Scholar
  10. [10]
    B. L. Montgomery and J. Abrahams, “On the redundancy of optimal binary prefixcondition codes for finite and infinite sources,” IEEE Trans. Inform. Theory, vol. IT-33, no. 1, pp. 156–160, Jan. 1987.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Renato M. Capocelli
    • 1
  • Alfredo De Santis
    • 2
  1. 1.Dipartimento di MatematicaUniversità di Roma “La Sapienza”RomaItaly
  2. 2.Dipartimento di Informatica ed ApplicazioniUniversità di SalernoBaronissi (Salerno)Italy

Personalised recommendations