Statistics on random trees

  • R. Casas
  • J. Díaz
  • C. Martinez
Complexity And Concurrency (Session 5)
Part of the Lecture Notes in Computer Science book series (LNCS, volume 510)


In this paper we give a survey of the symbolic operator methods to do statistics on random trees. We present some examples and apply the techniques to find their asymptotic behaviour.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ACDT89]
    L. Albert, R. Casas, J. Díaz, and A. Torrecillas. On unification over unrestricted pairs of trees. Technical Report LSI-89-26, LSI-UPC, Jan 1989.Google Scholar
  2. [ACF+91]
    [ACF+91] L. Albert, R. Casas, F. Fages, A. Torrecillas, and P. Zimmermann. Average case analysis of unification algorithms. In C. Choffrut and M. Jantzen, editors, Proceedings STACS-91, pages 196–213. Lecture Notes in Computer Science, Springer-Verlag, 1991.Google Scholar
  3. [BCDM91]
    R. Baeza, R. Casas, J. Díaz, and C. Martínez. On the average size of the intersection of binary trees. SIAM Journal on Computing, 1991. To appear. Also available as Tech. Rep. LSI-89-23,LSI-UPC, Nov 1989.Google Scholar
  4. [Ben75]
    J.L. Bentley. Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9):509–517, 1975.Google Scholar
  5. [CDM91]
    R. Casas, J. Díaz, and C. Martínez, Average-case analysis on simple families of trees using a balanced probability model. In Formal Power Series and Algebraic Combinatorics, pages 101–112. Lecture Notes in Computer Science, Springer-Verlag, 1991.Google Scholar
  6. [CDS89]
    R. Casas, J. Díaz, and J. M. Steyaert. Average-case analysis of Robinson's unification algorithm with two different variables. Information Processing Letters, 31:227–232, June 1989.Google Scholar
  7. [CDSV83]
    R. Casas, J. Díaz, J. M. Steyaert, and M. Verges. Some considerations on the ratio of compactification of binary trees. In J. Demitrovik and A. Saloma, editors, Algebra, Combinatiorics and Logic in Computer Science, volume 10, pages 185–199. Colloquia Mathematica Societatis Janos Bolyai, 1983.Google Scholar
  8. [CDV85]
    R. Casas, J. Díaz, and M. Verges. On counting BECs. Annals of Discrete Mathematics, 25:109–124, 1985.Google Scholar
  9. [CFS90]
    R. Casas, M.I. Fernández, and J-M. Steyaert. Algebraic simplification in computer algebra: an analysis of bottom-up algorithms. Theoretical Computer Science, 74:273–298, 1990.Google Scholar
  10. [CH62]
    R. Courant and D. Hilbert. Methods of Mathematical Physics, volume 2. InterScience J. Wiley, 1962.Google Scholar
  11. [CKS89]
    C. Choppy, S. Kaplan, and M. Soria. Complexity analysis of term-rewriting systems. Theoretical Computer Science, 67(2):261–282, 1989.Google Scholar
  12. [CLR89]
    T. H. Cormen, Ch. Leiserson, and R. Rivest, Introduction to Algorithms. The MIT Press, Cambridge, 1989.Google Scholar
  13. [Com74]
    L. Comtet. Advanced Combinatorics, Reidel, D., Dordrecht, 1974.Google Scholar
  14. [Cop75]
    E.T. Copson. Partial Differential Equations. Cambridge University Press, Cambridge, 1975.Google Scholar
  15. [CS86]
    R. Casas and J-M. Steyaert. Bottom-up recursion in trees. In P. Franchi-Zannettacci, editor, Colloquium on Trees in Algebra and Programming, pages 172–182. Lecture Notes in Computer Science. Springer-Verlag, 1986.Google Scholar
  16. [DB81]
    N.G. De Bruijn. Asymptotic Methods in Analysis. Dover, New York, 1981.Google Scholar
  17. [DKR72]
    N.G. De Bruijn, D.E. Knuth, and S.O. Rice. The Average Height of Planted Plane Trees, pages 15–22, Academic Press, New York, 1972.Google Scholar
  18. [Dev86]
    L. Devroye. A note on the height of binary search trees. J.ACM, 33(3):489–498, July 1986.Google Scholar
  19. [Dev90]
    L. Devroye. On the height of random m-ary search trees. Random structures and algorithms, 1(2):191–203, 1990.Google Scholar
  20. [Fel68]
    W. Feller. An Introduction to Probability Theory and its Applications. J. Wiley, New York, 1968.Google Scholar
  21. [Fla81]
    P. Flajolet. Analyse d'algorithmes de manipulation d'arbres et de fichiers, pages 1–209. 1981.Google Scholar
  22. [Fla87]
    P. Flajolet. Random tree models in the analysis of algorithms, pages 171–187. Elsevier Science Publishers, 1987.Google Scholar
  23. [Fla88]
    P. Flajolet. Mathematical methods in the analysis of algorithms and data structures. In E. Borger, editor, Trends in Theoretical Computer Science, pages 225–304. Computer Science Press, 1988.Google Scholar
  24. [FO82]
    P. Flajolet and A. Odlyzko. The average height of binary trees and other simple trees. JCSS, 25(2):171–213, Oct 1982.Google Scholar
  25. [FO90]
    P. Flajolet and A. Odlyzko. Singularity analysis of generating functions. SIAM Journal of Discrete Mathematics, 3:216–240, 1990.Google Scholar
  26. [FP86]
    P. Flajolet and C. Puech. Partial match retrival of multidimensional data. Journal of the ACM, 33(2):371–407, 1986.Google Scholar
  27. [FS87]
    P. Flajolet and J.M. Steyaert. A complexity calculus for recursive tree algorithms. Mathematical Systems Theory, 19:301–331, 1987.Google Scholar
  28. [FSS90]
    P. Flajolet, P. Sipala, and J-M. Steyaert. Analytic variations on the common subexpression problem. In M.S. Paterson, editor, 17th. Int. Colloquium on Automata, Languages and Programming, volume 20, pages 220–234. Springer-Verlag, Lecture Notes in Computer Science, 1990.Google Scholar
  29. [FSZ89]
    P. Flajolet, B. Salvy, and P. Zimmermann. Lambda-upsilon-omega the 1989 cookbook. Technical Report 1073, INRIA-Rocquencourt, Aug 1989.Google Scholar
  30. [GJ83]
    I. Goulden and D. Jackson. Combinatorial Enumerations. Wiley, New York, 1983.Google Scholar
  31. [GK82]
    D. Greene and D. Knuth. Mathematics for the Analysis of Algorithms (2nd ed.). Birkhauser, Boston, 1982.Google Scholar
  32. [GKP89]
    R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, Reading, Mass., 1989.Google Scholar
  33. [Har49]
    G.H. Hardy. Divergent Series. Oxford University Press, London, 1949.Google Scholar
  34. [Hay56]
    W.K. Hayman. A generalization of stirling's formula. J. Reine Angew. Math., 196:67–95, 1956.Google Scholar
  35. [Hen77]
    Peter Henrici. Applied and Computational Complez Analysis (volume 2). Wiley Interscience, New York, 1977.Google Scholar
  36. [Hof87]
    M. Hofri. Probabilistic Analysis of Algorithms. Texts and Monographs in Computer Science. Springer-Verlag, 1987.Google Scholar
  37. [HS68]
    B. Harris and L. Schoenfeld. Asymptotic expansions for the coefficients of analytic functions. Illinois J. Math., 12:264–277, 1968.Google Scholar
  38. [Inc56]
    E.L. Ince. Ordinary Differential Equations. Dover Publications, New York, 1956.Google Scholar
  39. [Knu68]
    D.E. Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1. Addison-Wesley, Reading, Mass., 1968.Google Scholar
  40. [Knu73]
    D.E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-Wesley, Reading, Mass., 1973.Google Scholar
  41. [Mah86]
    H. M. Mahmoud. On the average internal path length of m-ary search trees. Acta Informatica, 23:111–117, 1986.Google Scholar
  42. [Mar91]
    C. Martínez. Average-case analysis of equality of binary trees under the BST probability model. In Fundamentals of Computation Theory, 1991. To appear. Also available as Tech. Rep. LSI-91-8, 1991.Google Scholar
  43. [MP84]
    H. M. Mahmoud and B. Pittel. On the most probable shape of a search tree grown from a random generation. SIAM J Alg Disc Methods, 5(1):69–81, Mar 1984.Google Scholar
  44. [MT90]
    K. Mehlhorn and A. Tsakalidis. Data structures. In Jan Van Leeuwen, editor, Handbook of Theoretical Computer Science, Vol. A, pages 301–342. North-Holland, 1990.Google Scholar
  45. [MU70]
    R. Muntz and R. Uzgalis. In Proc. Princeton Conf. Information Sciences ans Systems, volume 4, pages 345–349, 1970.Google Scholar
  46. [Odl82]
    A.M. Odlyzko. Periodic oscillations of coefficients of power series that satisfy functional equations. Adv. Math., 44:50–63, 1982.Google Scholar
  47. [Olv74]
    F.W.J. Olver. Asymptotics and Special Functions. Academic Press, New York, 1974.Google Scholar
  48. [OR85]
    A.M. Odlyzko and L.B. Richmond. Asymptotic expansions for the coefficients of analytic generating functions. Aequationes Math., 28:50–63, 1985.Google Scholar
  49. [PB85]
    P. Purdom and C. Brown. The Analysis of Algorithms. Holt, Rinehart and Winston, New York, 1985.Google Scholar
  50. [Rob65]
    J.A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM, 12:23–41, 1965.Google Scholar
  51. [SF83]
    J.M. Steyaert and P. Flajolet. Patterns and pattern-matching in trees: An analysis. Information and Control, 58, 1–3:19–58, 1983.Google Scholar
  52. [Tit39]
    E.C. Titchmarsh. The Theory of Functions. Oxford University Press, Oxford, 1939.Google Scholar
  53. [VF90]
    J.S. Vitter and P. Flajolet. Average-case analysis of algorithms and data structures. In Jan Van Leeuwen, editor, Handbook of Theoretical Computer Science, Vol. A, pages 410–440. North-Holland, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • R. Casas
    • 1
  • J. Díaz
    • 1
  • C. Martinez
    • 1
  1. 1.Departament de Llenguatges i SistemesUniversitat Politècnica CatalunyaBarcelona

Personalised recommendations