Advertisement

On the complexity of algebraic power series

  • M. E. Alonso
  • T. Mora
  • M. Raimondo
Submitted Contributions Computational Algebra And Geometry
Part of the Lecture Notes in Computer Science book series (LNCS, volume 508)

Keywords

Local Ring Algebraic Function Irreducible Polynomial Irreducible Factor Zariski Closure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AMR]
    M.E.Alonso, T.Mora, M.Raimondo. A computational model for algebraic power series. J. Pure and Appl. Algebra, to appear.Google Scholar
  2. [B-R]
    R. Benedetti, J.J. Risler. Real Algebraic and Semialgebraic sets. Hermann, Paris 1990.Google Scholar
  3. [H]
    J.Heintz. Definability and fast quantifier elimination in algebraically closed fields. Theoretical Computer Science 24 (1983).Google Scholar
  4. [K-T]
    H.T.Kung, J.F.Traub. All Algebraic Functions can Be Computed Fast. J. ACM 25 (1978).Google Scholar
  5. [R1]
    R.Ramanakoraisina. Complexité des fonctions de Nash. Comm. Algebra 17 (1989).Google Scholar
  6. [R2]
    R.Ramanakoraisina. Bézout Theorem for Nash functions. Preprint U.E.R. Math.Univ. Rennes (1989).Google Scholar
  7. [Z-S]
    O.Zariski, P.Samuel. Commutative Algebra Vol II. Van Nostrand 1960.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • M. E. Alonso
    • 1
  • T. Mora
    • 2
  • M. Raimondo
    • 2
  1. 1.Departamento de Algebra, Facultad de Ciencias MatemáticasUniversidad ComplutenseMadridSpain
  2. 2.Dipartimento di MatematicaUniversitá di GenovaItaly

Personalised recommendations