A time-randomness tradeoff for communication complexity

  • Rudolf Fleischer
  • Hermann Jung
  • Kurt Mehlhorn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 486)


We present a tight tradeoff between the expected communication complexity \(\bar C\)and the number R of random bits used by any Las Vegas protocol (for a two-processor system) for the list-disjointness function of two lists of n numbers of n bits each. This function evaluates to 1 if and only if the two lists correspond in at least one position. We show a log(n2/\(\bar C\)) lower bound on the number of random bits used by any Las Vegas protocol, Ω(n) ≤ \(\bar C\)O(n2). We also show that expected communication complexity \(\bar C\), Ω(n log n) ≤ \(\bar C\)O(n2), can be achieved using no more than (1+o(1)) log(n2/\(\bar C\)) random bits.


  1. [AUY]
    A.V. Aho, J.D. Ullman, M. Yannakakis ”On notions of information transfer in VLSI circuits” Proc. 15th ACM STOC 1983, 133–139Google Scholar
  2. [CG]
    R. Canetti, O. Goldreich ”Bounds on tradeoffs between randomness and communication complexity” to appear in FOCS 1990Google Scholar
  3. [F87]
    M. Fürer ”The power of randomness for communication complexity” Proc. 19th ACM STOC 1987, 178–181Google Scholar
  4. [F89]
    R. Fleischer “Communication complexity of multi processor systems” IPL 30 (1989), 57–65Google Scholar
  5. [G72]
    K.-B. Gundlach ”Einführung in die Zahlentheorie BI Bd. 772, 1972Google Scholar
  6. [H86]
    B. Halstenberg ”Zweiprozessorkommunikationskomplexität” Diplomarbeit University of Bielefeld 1986Google Scholar
  7. [HR87]
    B. Halstenberg, R. Reischuk ”Relations between communication complexity classes” Proc. 3rd Structure Conference 1988 Google Scholar
  8. [HR88]
    B. Halstenberg, R. Reischuk ”On different modes of communication” Proc. 20th ACM STOC 1988, 162–172Google Scholar
  9. [HW]
    Hardy & Wright ”An Introduction to the Theory of Numbers” 5th edition, Oxford 1979Google Scholar
  10. [KPU]
    D. Krizanc, D. Peleg, E. Upfal ”A time-randomness tradeoff for oblivious routing” Proc. 20th ACM STOC 1988, 93–102Google Scholar
  11. [KY]
    D.E. Knuth, A.C Yao ”The complexity of nonuniform random number generation” in Algorithms and Complexity, Ed. J.E. Traub, Academic Press N.Y., 1976, 357–428Google Scholar
  12. [LS81]
    R.J. Lipton, R. Sedgewick ”Lower bounds for VLSI” Proc. 13th ACM STOC 1981, 300–307Google Scholar
  13. [LS88]
    L. Lovász, M. Saks ”Lattices, möbius functions and communication complexity” Proc. 29th IEEE FOCS 1988, 81–90Google Scholar
  14. [MS]
    K. Mehlhorn, E.M. Schmidt ”Las Vegas is better than determinism in VLSI and distributed computing” Proc. 14th ACM STOC 1982, 330–337Google Scholar
  15. [PS]
    C.H. Papadimitriou, M. Sipser ”Communication complexity” Proc. 14th ACM STOC, 1982, 196–200 Journal of Computer and System Sciences 28, 1984, 260–269Google Scholar
  16. [RS]
    P. Raghavan, M. Snir ”Memory versus randomization in on-line algorithms” ICALP 1989, 687–703Google Scholar
  17. [Y77]
    A.C. Yao ”Probabilistic computations: toward a unified measure of complexity” Proc. 18th IEEE FOCS 1977, 222–227Google Scholar
  18. [Y79]
    A.C. Yao ”Some complexity questions related to distributive computing” Proc. 11th ACM STOC 1979, 209–213Google Scholar
  19. [Y83]
    A.C. Yao ”Lower bounds by probabilistic arguments” Proc. 24th IEEE FOCS 1983, 420–428Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Rudolf Fleischer
    • 1
  • Hermann Jung
    • 2
  • Kurt Mehlhorn
    • 1
  1. 1.Department of Computer ScienceUniversity of SaarlandSaarbrückenGermany
  2. 2.Department of Computer ScienceHumboldt UniversityBerlinGermany

Personalised recommendations