Detecting redundant narrowing derivations by the LSE-SL reducibility test

  • Stefan Krischer
  • Alexander Bockmayr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 488)

Abstract

Rewriting and narrowing provide a nice theoretical framework for the integration of logic and functional programming. For practical applications however, narrowing is still much too inefficient. In this paper we show how reducibility tests can be used to detect redundant narrowing derivations. We introduce a new narrowing strategy, LSE-SL left-to-right basic normal narrowing, prove its completeness for arbitrary canonical term rewriting systems, and demonstrate how it increases the efficiency of the narrowing process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bockmayr 86a]
    A. Bockmayr: Conditional Rewriting and Narrowing as a Theoretical Framework for Logic-Functional Programming: A Survey. Interner Bericht 10/86, Fakultät für Informatik, Universität Karlsruhe, 1986Google Scholar
  2. [Bockmayr 86b]
    A. Bockmayr: Narrowing with Inductively Defined Functions. Interner Bericht 25/86, Fakultät für Informatik, Universität Karlsruhe, 1986Google Scholar
  3. [Bockmayr 88]
    A. Bockmayr: Narrowing with Built-in Theories. First Int. Workshop Logic and Algebraic Programming, Gaußig, DDR, 1988, Springer LNCS 343Google Scholar
  4. [Bosco/Giovannetti/Moiso 88]
    P. G. Bosco, E. Giovannetti, C. Moiso: Narrowing vs. SLD-Resolution. Theoretical Computer Science 59 (1988), 3–23Google Scholar
  5. [Darlington/Guo 89]
    J. Darlington, Y. Guo: Narrowing and Unification in Functional Programming — an Evaluation Mechanism for Absolute Set Abstraction. Rewriting Techniques and Applications, Chapel Hill, 1989, Springer LNCS 355Google Scholar
  6. [Dershowitz/Plaisted 85]
    N. Dershowitz, D. A. Plaisted: Logic Programming cum Applicative Programming. Symp. on Logic Programming, Boston 1985, IEEEGoogle Scholar
  7. [Dershowitz/Plaisted 88]
    N. Dershowitz, D. A. Plaisted: Equational Programming. Mach. Intell. 11 (Ed. J. Richards), Oxford, 1988Google Scholar
  8. [Echahed 88]
    R. Echahed: On Completeness of Narrowing Strategies. CAAP 88, Nancy, Springer LNCS 299Google Scholar
  9. [Fribourg 85]
    L. Fribourg: Handling Function Definitions Through Innermost Superposition and Rewriting. Rewriting Techniques and Applications, Dijon, 1985, Springer LNCS 202Google Scholar
  10. [Herold 86]
    A. Herold: Narrowing Techniques Applied to Idempotent Unification. SEKI Report SR-86-16, Universität Kaiserslautern, 1986Google Scholar
  11. [Hölldobler 89]
    S. Hölldobler: Foundations of Equational Logic Programming. Springer, LNCS 353, 1989Google Scholar
  12. [Huet/Oppen 80]
    G. Huet, D. C. Oppen: Equations and Rewrite Rules, A Survey. Formal Language Theory (Ed. R. V. Book), Academic Press 1980Google Scholar
  13. [Hullot 80]
    J. M. Hullot: Canonical Forms and Unification. 5th Conference on Automated Deduction, Les Arcs 1980, Springer LNCS 87Google Scholar
  14. [Krischer 90]
    S. Krischer: Vergleich und Bewertung von Narrowing-Strategien. Diplomarbeit, Fakultät für Informatik, Universität Karlsruhe, 1990Google Scholar
  15. [Nutt/Réty/Smolka 89]
    W. Nutt, P. Réty, G. Smolka: Basic Narrowing Revisited. J. Symb. Comput. 7 (1989), 295–317Google Scholar
  16. [Padawitz 88]
    P. Padawitz: Computing in Horn Clause Theories. EATCS Monograph Vol. 16, Springer, 1988Google Scholar
  17. [Réty et al. 85]
    P. Réty, C. Kirchner, H. Kirchner, P. Lescanne: NARROWER: a New Algorithm for Unification and its Application to Logic Programming. Rewriting Techniques and Applications, Dijon, 1985, Springer LNCS 202Google Scholar
  18. [Réty 87]
    P. Réty: Improving Basic Narowing Techniques. Rewriting Techniques and Applications, Bordeaux, 1987, Springer LNCS 256Google Scholar
  19. [Réty 88]
    P. Réty: Méthodes d'Unification par Surréduction. Thèse. Univ. Nancy, 1988Google Scholar
  20. [You 88]
    J. You: Solving Equations in an Equational Language. First Int. Workshop Logic and Algebraic Programming, Gaußig, DDR, 1988, Springer LNCS 343Google Scholar
  21. [You 90]
    J. You: Unification Modulo an Equality Theory for Equational Logic Programming. to appear in: J. Comp. Syst. Sc. 40 (1990)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Stefan Krischer
    • 1
  • Alexander Bockmayr
    • 1
  1. 1.Institut für Logik, Komplexität und DeduktionssystemeUniversität KarlsruheKarlsruhe 1F.R.Germany

Personalised recommendations