Vicinity respecting net morphisms

  • Jörg Desel
  • Agathe Merceron
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 483)


Vicinity respecting net morphisms are a restricted class of net morphisms. The restriction requires that pre- and post-sets of elements are respected by the morphisms. However, vicinity respecting net morphisms allow to map S-elements to T-elements and vice versa and can hence formalize contractions of nets.

Amongst some general properties of net morphisms and in particular of vicinity respecting net morphisms it is shown how this concept can be used for net transformations such as abstractions and compositions which preserve global properties. In particular, sufficient conditions for the preservation of coverings by S-components and T-components are given.


Net morphisms synthesis and structure of nets coarsening and composition of nets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Best, E.; Fernández C., C.: Notations and Terminology on Petri Net Theory. Arbeitspapiere der GMD Nr.195, GMD St.Augustin, FRG (1986).Google Scholar
  2. [2]
    Best, E.; Desel, J.: Partial Order Behaviour and Structure of Petri Nets. Formal Aspects of Computing Vol.2 pp.123–138 (1990).Google Scholar
  3. [3]
    Desel, J.; Merceron A.: P/T-systems as Abstractions of C/E-systems. In: Advances in Petri Nets 1989, Lecture Notes in Computer Science Vol.424 pp.105–127, Springer-Verlag (1990). Extended Version as: Arbeitspapiere der GMD Nr.331, GMD St.Augustin, FRG (1988).Google Scholar
  4. [4]
    Fernández C., C.: Net Topology I. Interner Bericht der GMD ISF-75-9 GMD St.Augustin, FRG (1975). Net Topology II. Interner Bericht der GMD ISF-76-2, GMD St.Augustin, FRG (1976).Google Scholar
  5. [5]
    Genrich, H.J.; Lautenbach, K.; Thiagarajan, P.S.: Elements of General Net Theory. In: Net theory and Applications; Brauer W. (Ed.), Lecture Notes in Computer Science Vol.84 pp.21–163, Springer-Verlag (1980).Google Scholar
  6. [6]
    Genrich, H.J.; Stankiewicz-Wiechno, E.: A Dictionary of Some Basic Notions of Net Theory. In: Net Theory and Applications; Brauer W. (Ed.), Lecture Notes in Computer Science Vol.84 pp.519–535, Springer-Verlag (1980).Google Scholar
  7. [7]
    Petri, C.A.: Concepts of Net Theory. Mathematical Foundations of Computer Science: Proceedings of Symposium and Summer School, High Tatras, Sep. 3–8, 1973. Mathematical Institute of the Slovak Academy of Sciences, pp.137–146 (1973).Google Scholar
  8. [8]
    Petri, C.A.: “Forgotten Topics” of Net Theory. Petri Nets: Applications and Relationships to Other Models of Concurrency. Brauer, W.; Reisig, W.; Rozenberg, G. (Eds.). Lecture Notes in Computer Science Vol.255 pp.500–515, Springer-Verlag (1987).Google Scholar
  9. [9]
    Smith, E.; Reisig, W.: The Semantics of a Net is a Net — An Exercise in General Net Theory. Voss, K.; Genrich, H.J.; Rozenberg, G. (Eds.): Concurrency and Nets, pp.461–479, Springer-Verlag (1987).Google Scholar
  10. [10]
    Winskel, G.: A New Definition of Morphism on Petri Nets. STACS 84, Lecture Notes in Computer Science Vol.166 pp.140–150, Springer-Verlag (1984).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Jörg Desel
    • 1
  • Agathe Merceron
    • 2
  1. 1.Institut für InformatikTechnische Universität MünchenMünchen 2
  2. 2.Gesellschaft für Mathematik und DatenverarbeitungInstitut für methodische GrundlagenSt.Augustin 1

Personalised recommendations