Quantum Groups pp 107-117

Classification and characters of Uq(sl(3, C ))representations

  • V. K. Dobrev
II. Representation of Special Quantum Groups
Part of the Lecture Notes in Physics book series (LNP, volume 370)


We summarize the classification of the induced highest weight modules (HWM) and the irreducible HWM over the quantum group U.(sl(3, P) . We give the character formulae and the dimensions of a large class of these irreducible HWM.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V.G. Drinfeld, Dokl. Akad. Nauk SSSR 283 (1985) 1060–1064 (in Russian); English translation: Soviet. Math. Dokl. 32 (1985) 254–258; Proceedings ICM, (MRSI, Berkeley, 1986).Google Scholar
  2. [2]
    N.Yu. Reshetikhin, Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links I. II., LOMI Leningrad preprints E-4-87, E-17-87 (1987).Google Scholar
  3. [3]
    A.N. Kirillov and N.Yu. Reshetikhin, Representations of the algebra Uq(sl(2)), q-orthogonal polynomials and invariants of links, LOMI Leningrad preprint E-9-88 (1988).Google Scholar
  4. [4]
    L.D. Faddeev, Integrable models in 1+1 dimensional quantum field theory, in Les Houches Lectures 1982, (Elsevier, Amsterdam,1984)Google Scholar
  5. 4a.
    P.P. Kulish and E.K. Sklyanin, Lecture Notes in Physics, Vol. 151 (1982) pp. 61–119.Google Scholar
  6. [5]
    P.P. Kulish and N.Yu. Reshetikhin, Zap. Nauch. Semin. LOMI 101 (1981) 101–110 (in Russian); English translation: J. Soviet. Math. 23 (1983) 2435–2441.Google Scholar
  7. [6]
    E.K. Sklyanin, (a) Funkts. Anal. Prilozh. 16 (1982) 27–34, 17 (1983) 34–48 (in Russian); English translation: Funct. Anal. Appl. 16 (1982) 263–270, 17 (1983) 274–88; (b) Uspekhi Mat. Nauk 40 (1985) 214 (in Russian).Google Scholar
  8. [7]
    M. Jimbo, Lett. Math. Phys. 10 (1985) 63–69; Lett. Math. Phys. 11 (1986) 247–252.Google Scholar
  9. [8]
    M. Rosso, C.R. Acad. Sci. Paris 305 Serie I, (1987) 587–590Google Scholar
  10. 8a.
    S.L. Woronowicz, Comm. Math. Phys. 111 (1987) 613–665.Google Scholar
  11. [9]
    M. Rosso, Comm. Math. Phys. 117 (1987) 581–593Google Scholar
  12. 9a.
    G. Lusztig Adv. Math. 70 (1988) 237–249.Google Scholar
  13. [10]
    P. Roche and D. Arnaudon, Irreducible representations of the quantum analogue of SU(2), Ecole Polytechnique Palaiseau preprint (1988)Google Scholar
  14. 10a.
    V. Pasquier and H. Saleur, Saclay preprint SPhT/89-031 (1989).Google Scholar
  15. [11]
    L. Alvarez-Gaumé, C. Gomez and G. Sierra, Phys. Lett. 220B (1989) 142–152Google Scholar
  16. 11a.
    L. Alvarez-Gaumé, C. Gomez and G. Sierra, preprint CERN-TH.5129/88 (1988).Google Scholar
  17. [12]
    V.K. Dobrev, ICTP Trieste internal report IC/89/142 (1989).Google Scholar
  18. [13]
    V.K. Dobrev, Proceedings of the 13th Johns Hopkins Workshop “Knots, Topology and Field theory”, (Florence, 14–16.6.1989), Ed. L. Lusanna (World Sci, Singapore, 1989) pp. 539–547.Google Scholar
  19. [14]
    V.K. Dobrev, J.Math.Phys. 26 (1985) 235–251 and ICTP Trieste preprint IC/83/36 (1983); Talk at the I National Congress of Bulgarian Physicists, Sofia (1983), INRNE Sofia preprint (1983) and Lett.Math.Phys. 9 (1985) 205–211.Google Scholar
  20. [15]
    V.K. Dobrev, Talk at the Conference on Algebraic Geometry and Integrable Systems, Oberwolfach (July 1984) and ICTP Trieste preprint IC/85/9 (1985).Google Scholar
  21. [16]
    V.K. Dobrev, in: Proceedings of the XIII International Conference on DifferentialGeometric Methods in Theoretical Physics, Shumen (1984), Eds. H.D. Doebner and T.D. Palev (World Sci., Singapore, 1986) pp.348–370 and ICTP Trieste preprint IC/85/13 (1985).Google Scholar
  22. [17]
    V.K. Dobrev, Lett.Math.Phys. 11 (1986) 225–234.Google Scholar
  23. [18]
    E. Abe, Hopf Agebras, Cambridge Tracts in Math., N 74, (Cambridge Univ. Press, 1980).Google Scholar
  24. [19]
    J. Dixmier, Enveloping Algebras, (North Holland, New York, 1977).Google Scholar
  25. [20]
    I.N. Bernstein, I.M. GeFfand and S.I. Gel'fand, Funkts. Anal. Prilozh. 5 Ni (1971) 1–9; English translation: Funkt. Anal. Appl. 5 (1971) 1–8.Google Scholar
  26. [21]
    V.G. Kac and D. Kazhdan, Adv. Math. 34 (1979) 97–108.Google Scholar
  27. [22]
    V.G. Kac, Infinite-dimensional Lie algebras. An introduction, Progr. Math. Vol. 44 (Birkhäuser, Boston, 1983).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • V. K. Dobrev
    • 1
  1. 1.Institute of Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations