Equivalence of finite-valued bottom-up finite state tree transducers is decidable

  • Helmut Seidl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 431)


A bottom-up finite state tree transducer (FST) A is called k-valued iff for every input tree there are at most k different output trees. A is called finite-valued iff it is k-valued for some k. We show: it is decidable for every k whether or not a given FST A is k-valued, and it is decidable whether or not A is finite-valued. We give an effective characterization of all finite-valued FST's and derive a (sharp) upper bound for the valuedness provided it is finite. We decompose a finite-valued FST A into a finite number of single-valued FST's. This enables us to prove: it is decidable whether or not the translation of an FST A is included in the translation of a finite-valued FST A'.


Input Tree Tree Automaton Tree Transducer Attribute Grammar Abstract Syntax Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [CoFr80]
    B. Courcelle, P. Franchi-Zannettacchi: Attribute grammars and recursive program schemes, part I. TCS 17 (1982) pp. 163–191CrossRefGoogle Scholar
  2. [CuKa86]
    K. Culik II and J. Karhumäki: The equivalence of finite valued transducers (on HDTOL languages) is decidable. TCS 47 (1986), pp. 71–84CrossRefGoogle Scholar
  3. [En80]
    J. Engelfriet: Some open questions and recent results on tree transducers and tree languages. In: Formal Language Theory, ed. by R.V. Book, Academic Press 1980, pp. 241–286Google Scholar
  4. [Es80]
    Z. Esik: Decidability results concerning tree transducers I. Acta Cybernetica 5 (1980), pp. 1–20Google Scholar
  5. [GeSt84]
    F. Gecseg, M. Steinby: Tree automata. Akademiai Kiado, Budapest, 1984Google Scholar
  6. [GiSch88]
    R. Giegerich, K. Schmal: Code selection techniques: pattern matching, tree parsing and inversion of derivors. Proc. of ESOP 1988, LNCS 300 pp. 245–268Google Scholar
  7. [GrRo80]
    R.L. Graham, B.L. Rothschild, J.H. Spencer: Ramsey Theory. John Wiley & Sons, 1980Google Scholar
  8. [Paul78]
    W. Paul: Komplexitätstheorie. B.G. Teubner Verlag Stuttgart 1978Google Scholar
  9. [Sch76]
    M. Schützenberger: Sur les relations rationelles entre monoides libres. TCS 3 (1976), pp. 243–259CrossRefGoogle Scholar
  10. [Sei89]
    H. Seidl: On the finite degree of ambiguity of finite tree automata. Acta Inf. 26 (1989), pp. 527–542Google Scholar
  11. [WeSe86]
    A. Weber, H. Seidl: On the degree of ambiguity of finite automata. MFCS 1986, Lect. Notes in Comp. Sci. 233, pp. 620–629Google Scholar
  12. [We87]
    A. Weber: Über die Mehrdeutigkeit und Wertigkeit von endlichen Automaten und Transducern. Doct. Thesis Frankfurt/Main 1987Google Scholar
  13. [We88a]
    A. Weber: On the valuedness of finite transducers. Preprint 1988Google Scholar
  14. [We88b]
    A. Weber: A decomposition theorem for finite-valued transducers and an application to the equivalence problem. Proc. MFCS 1988 in: LNCS 324, pp. 552–562Google Scholar
  15. [We89]
    A. Weber: On the lengths of values in a finite transducer. Proc. MFCS 1989 in: LNSC 379, pp. 523–533Google Scholar
  16. [Za78]
    Z. Zachar: The solvability of the equivalence problem for deterministic frontier-to-root tree transducers. Acta Cybernetica 4 (1978), pp. 167–177Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Helmut Seidl
    • 1
  1. 1.Fachbereich InformatikUniversität des SaarlandesSaarbrücken 11West-Germany

Personalised recommendations