Advertisement

The resolution program, able to decide some solvable classes

  • Tanel Tammet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 417)

Abstract

In the first part of the paper we describe our theorem-prover implementing a certain modification of the resolution strategy of N.Zamov. Zamov's strategy decides a number of solvable classes, including Maslov's Class K (this class contains most well-known decidable classes like Gödel's Class, Skolem's Class, Monadic Class). We describe several experiments performed with the theorem-prover.

The second part of a paper consists of a proof that a presented modoification of Zamov's strategy decides a wide class of formulas with functional symbols, called E+.

The work described here has been guided by G.Mints. We would also like to thank N.Zamov for helpful discussions.

Keywords

Function Symbol Resolution Method Resolution Strategy Ground Term Substitution Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Church, A. Introduction to mathematical logic I. (Princeton University Press, New Jersey, 1956).Google Scholar
  2. 2.
    Dreben, B., Goldfarb, W.D. The decision problem: solvable classes of quantificational formulas. (Addison-Wesley, Reading, 1979).Google Scholar
  3. 3.
    Hindley, R., Meredith, D. Principal type-schemes and condensed detachment. Preprint, October 1987.Google Scholar
  4. 4.
    Joyner, W.H. Resolution strategies as decision procedures. J. ACM 23 (3)(1976), 396–417.Google Scholar
  5. 5.
    Leitsch, A. On different concepts of resolution. Zeitschr. f. math. Logik und Grundlagen d. Math. 35 (1989) 71–77.Google Scholar
  6. 6.
    Maslov, S.Ju. An inverse method of establishing deducibility in the classical predicate calculus. Dokl. Akad. Nauk. SSSR 159 (1964) 17–20=Soviet Math. Dokl. 5 (1964) 1420, MR 30 #3005.Google Scholar
  7. 7.
    Maslov, S.Ju. The inverse method for establishing deducibility for logical calculi. Trudy Mat. Inst. Steklov 98 (1968) 26–87=Proc. Steklov. Inst. Math. 98 (1968) 25–96, MR 40 #5416; 43 #4620.Google Scholar
  8. 8.
    Maslov, S.Ju. Proof-search strategies for methods of the resolution type. Machine Intelligence 6 (American Elsevier, 1971) 77–90.Google Scholar
  9. 9.
    Mints, G.E, Tammet, T. Experiments in proving formulas of non-classical logics with a resolution theorem-prover. To appear.Google Scholar
  10. 10.
    Wos, L., Overbeek, R., Lusk, E. Boyle, J. Automated reasoning: introduction and applications. (Prentice-Hall, New Jersey, 1984).Google Scholar
  11. 11.
    Zamov, N.K., On a bound for the complexity of terms in the resolution method. Trudy Mat. Inst. Steklov 128 (1972), 5–13.Google Scholar
  12. 12.
    Zamov, N.K., Maslov's inverse method and decidable classes. Annals of Pure and Applied Logic 42 (1989), 165–194.Google Scholar
  13. 13.
    Маслов С. Ю, Минц Г.Е. Теория поиска вывода и обратныи метод. Доп. к русскому переводу: Чень, Ч., Ли, Р. математическая логика и автоматическое доказательство теорем. (Наука, М., 1983) 291–314.Google Scholar
  14. 14.
    Оревков В.П. Один разрешимый классс формул классического исчисления предикатов с функционалными знаками. Сб: II симпозиум по кибернетике (тезисы), Тбилиси 1965, 176.Google Scholar
  15. 15.
    Сочилина А. В. О программе, реализующей алгоритм установления выводимости формул классического исчисления предикатов. Семиотика и информатика 12 (1979).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Tanel Tammet
    • 1
  1. 1.Institute of CyberneticsEstonian Academy of SciencesTallinnEstonia

Personalised recommendations