Minimum vertex hulls for polyhedral domains

Conference abstract
  • Gautam Das
  • Deborah Joseph
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 415)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. [A]
    H. Alt, “Approximation of Convex Polygons by Rectangles and Circles”, Manuscript, (1989).Google Scholar
  2. [AB]
    A. Aggarwal, H. Booth J. O'Rourke, S. Suri, C.K. Yap, “Finding Minimal Convex Nested Polygons”, Proc. 1st Annual Symp. on Comp. Geometry (1985), pp 296–303.Google Scholar
  3. [CKV]
    K. Clarkson, S. Kapoor, P. Vaidya, “Rectilinear Shortest Paths through Polygonal Obstacles in O(n(logn)2) Time”, Proc. 3rd Annual Symp. on Comp. Geometry (1987), pp 251–257.Google Scholar
  4. [CY]
    J.S. Chang, C.Y. Yap, “A Polynomial Solution for Potato Peeling and Other Polygon Inclusion and Enclosure Problems”, IEEE Symp. on Foundations of Computer Sciences, (1984), pp 408–417.Google Scholar
  5. [DJ]
    G. Das, D. Joseph, “Minimum Vertex Hulls for Polyhedral Domains”, Technical Report, (Nov 1989), University of Wisconsin-Madison.Google Scholar
  6. [GJ]
    M. Garey, D. Johnson, “Computers and Intractability”, Published by W. H. Freeman and Co. (1979).Google Scholar
  7. [KL]
    V. Klee, M.C. Laskowski, “Finding the Smallest Triangle Containing a Given Convex Polygon”, Journal of Algorithms, (1985).Google Scholar
  8. [L]
    D. Lichtenstein, “Planar Formulae and their Uses”, SIAM Journal Comp., (1982), pp 329–343.Google Scholar
  9. [O]
    J. O'Rourke, “Computational Geometry Column”, SIGACT News, (1988).Google Scholar
  10. [TV]
    R. Tarjan, C. Van Wyk, “An O(nloglogn)-Time Algorithm for Triangulating a Simple Polygon”, SIAM Journal Comp. (1988), pp 143–178.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Gautam Das
    • 1
  • Deborah Joseph
    • 1
  1. 1.University of WisconsinUSA

Personalised recommendations