Minimal pairs and complete problems

  • Klaus Ambos-Spies
  • Steven Homer
  • Robert I. Soare
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 415)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Ambos-Spies, Minimal pairs for polynomial time reducibilities, in Computation Theory and Logic, E. Börger ed., Lecture Notes in Computer Science, 270, (1987), 1–14.Google Scholar
  2. [2]
    K. Ambos-Spies, Polynomial time degrees of NP sets, in Current Trends in Theoretical Computer Science, E. Börger ed., Computer Science Press, 1987.Google Scholar
  3. [3]
    K. Ambos-Spies, An inhomogeneity in the polynomial time degrees, SIAM J. Comput. 15 (1986) 958–963.CrossRefGoogle Scholar
  4. [4]
    T. Baker, J. Gill and R. Solovay, Relativizations of the P=?NP questions, SIAM J. Comput. 4 (1975), 431–442.CrossRefGoogle Scholar
  5. [5]
    P. Chew and M. Machtey, A note on structure and looking back applied to the relative complexity of computable functions, J. Computer System Sci. 22 (1981), 53–59.CrossRefGoogle Scholar
  6. [6]
    R. Downey, Nondiamond theorems for polynomial time reducibility (to appear).Google Scholar
  7. [7]
    H. Heller, Relativized polynomial hierarchy extending two levels, Thesis, Technische Universität Munich, (1980).Google Scholar
  8. [8]
    S. Homer and W. Maass, Oracle dependent properties of the lattice of NP sets, Theor. Comp. Science 24 (1983), 279–289.CrossRefGoogle Scholar
  9. [9]
    R. E. Ladner, On the structure of polynomial time reducibility, JACM 22 (1975), 155–171.CrossRefGoogle Scholar
  10. [10]
    L. H. Landweber, R. J. Lipton and E.L. Robertson, On the structure of sets in NP and other complexity classes, Theor. Comp. Sci. 15 (1981), 103–123.CrossRefGoogle Scholar
  11. [11]
    M. Machtey, Minimal pairs of polynomial degrees with subexponential complexity, Theor. Comp. Sci. 2 (1976), 73–76.CrossRefGoogle Scholar
  12. [12]
    U. Schöning, A uniform approach to obtain diagonal sets in complexity classes, Theor. Comp. Sci. 18 (1982), 95–103.CrossRefGoogle Scholar
  13. [13]
    U. Schöning, Minimal pairs for P, Theor. Comp. Sci. 31 (1984), 41–48.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Klaus Ambos-Spies
    • 1
  • Steven Homer
    • 2
  • Robert I. Soare
    • 3
  1. 1.Mathematisches InstitutUniversität HeidelbergHeidelberg
  2. 2.Department of Computer ScienceBoston UniversityBoston
  3. 3.Department of MathematicsUniversity of ChicagoChicago

Personalised recommendations