The ring of k-regular sequences

  • Jean-Paul Allouche
  • Jeffrey Shallit
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 415)


The automatic sequence is the central concept at the intersection of formal language theory and number theory. It was introduced by Cobham, and has been extensively studied by Christol, Kamae, Mendès France and Rauzy, and other writers. Since the range of an automatic sequence is finite, however, their descriptive power is severely limited.

In this paper, we generalize the concept of automatic sequence to the case where the sequence can take its values in a (possibly infinite) ring R; we call such sequences k-regular. (If R is finite, we obtain automatic sequences as a special case.) We argue that k-regular sequences provide a good framework for discussing many “naturally-occurring” sequences, and we support this contention by exhibiting many examples of k-regular sequences from numerical analysis, topology, number theory, combinatorics, analysis of algorithms, and the theory of fractals.

We investigate the closure properties of k-regular sequences. We prove that the set of k-regular sequences forms a ring under the operations of term-by-term addition and convolution. Hence the set of associated formal power series in R[[X]] also forms a ring.

We show how k-regular sequences are related to ℤ-rational formal series. We give a machine model for the k-regular sequences. We prove that all k-regular sequences can be computed quickly.

Let the pattern sequence ep (n) count the number of occurrences of the pattern P in the base-k expansion of n. Morton and Mourant showed that every sequence over ℤ has a unique expansion as sum of pattern sequences. We prove that this “Fourier” expansion maps k-regular sequences to k-regular sequences. In particular, the coefficients in the expansion of ep(an+b) form a k-automatic sequence.


Automatic Sequence Formal Power Series Finite Automaton Gray Code Binomial Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A1]
    J.-P. Allouche, Automates finis en théorie des nombres, Expo. Math. 5 (1987), 239–266.Google Scholar
  2. [AMS]
    J.-P. Allouche, P. Morton, and J. Shallit, Pattern spectra, substring enumeration, and automatic sequences, preprint.Google Scholar
  3. [B2]
    N. G. de Bruijn, Some direct decompositions of the set of integers, Math. Tables Aids Comput. 18 (1964), 537–546.Google Scholar
  4. [BM]
    A. Blanchard and M. Mendès France, Symétrie et transcendance, Bull. Sci. Math. 106 (1982), 325–335.Google Scholar
  5. [BR]
    J. Berstel and C. Reutenauer, Rational series and their languages, Springer-Verlag, 1988.Google Scholar
  6. [Brl]
    S. Brlek, Enumeration of factors in the Thue-Morse word, Disc. Appl. Math. 24 (1989), 83–96.CrossRefGoogle Scholar
  7. [CKMR]
    G. Christol, T. Kamae, M. Mendès France and G. Rauzy, Suites algébriques, automates et substitutions, Bull. Soc. Math. France 108 (1980), 401–419.Google Scholar
  8. [Cob]
    A. Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972), 164–192.CrossRefGoogle Scholar
  9. [Coq]
    J. Coquet, A summation formula related to the binary digits, Invent. Math. 73 (1983), 107–115.CrossRefGoogle Scholar
  10. [Cor]
    J. C. van der Corput, Verteilungsfunktionen, Proc. Ned. Akad. v. Wet. 38 (1935), 813–821.Google Scholar
  11. [CS]
    C. Choffrut and M. P. Schützenberger, Counting with rational functions, Theor. Comput. Sci. 58 (1988), 81–101.CrossRefGoogle Scholar
  12. [DMFP]
    M. Dekking, M. Mendès France, and A. van der Poorten, FOLDS!, Math. Intell. 4 (1982), 130–138; 173–195.Google Scholar
  13. [Fi]
    N. J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947), 589–592.Google Scholar
  14. [FR]
    P. Flajolet and L. Ramshaw, A note on Gray code and odd-even merge, SIAM J. Comput. 9 (1980), 142–158.CrossRefGoogle Scholar
  15. [G]
    H. W. Gould, Exponential binomial coefficient series, Technical Report 4, Department of Mathematics, W. Virginia Univ., September 1961.Google Scholar
  16. [Gi]
    E. Gilbert, Gray codes and paths on the n-cube, Bell Sys. Tech. J. 37 (1958), 815–826.Google Scholar
  17. [GKP]
    R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989.Google Scholar
  18. [Gl]
    J. W. L. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quart. J. Pure Appl. Math. 30 (1899), 150–156.Google Scholar
  19. [GYY]
    R. Graham, A. Yao, and F. Yao, Addition chains with multiplicative cost, Disc. Math. 23 (1978), 115–119.CrossRefGoogle Scholar
  20. [Hal]
    J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals, Numer. Math. 2 (1960), 84–90.CrossRefGoogle Scholar
  21. [Lan]
    S. Lang, Algebra, Addison-Wesley, 1971.Google Scholar
  22. [LMP]
    D. H. Lehmer, K. Mahler, and A. J. van der Poorten, Integers with digits 0 or 1, Math. Comp. 46 (1986) 683–689.Google Scholar
  23. [LP1]
    J. H. Loxton and A. J. van der Poorten, An awful problem about integers in base four, Acta Arithmetica 49 (1987), 193–203.Google Scholar
  24. [LV]
    A. de Luca and S. Varricchio, Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups, Theor. Comput. Sci. 63 (1989), 333–348.CrossRefGoogle Scholar
  25. [MFP]
    M. Mendès France and A. J. van der Poorten, From geometry to Euler identities, Theor. Comput. Sci. 65 (1989), 213–220.CrossRefGoogle Scholar
  26. [MFS]
    M. Mendès France and J. Shallit, Wire bending, J. Combinatorial Theory, A 50 (1989), 1–23.CrossRefGoogle Scholar
  27. [MM]
    P. Morton and W. Mourant, Paper folding, digit patterns, and groups of arithmetic fractals, Proc. Lond. Math. Soc. 59 (1989), 253–293.Google Scholar
  28. [Mos]
    L. Moser, An application of generating series, Math. Mag. 35 (1962), 37–38.Google Scholar
  29. [N]
    D. J. Newman, On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc. 21 (1969), 719–721.Google Scholar
  30. [NS]
    D. J. Newman and M. Slater, Binary digit distribution over naturally defined sequences, Trans. Amer. Math. Soc. 213 (1975), 71–78.Google Scholar
  31. [R]
    G. de Rham, Un peu de mathématiques à propos d'une courbe plane, Elem. Math. 2 (1947), 73–77; 89–97.Google Scholar
  32. [Rau]
    G. Rauzy, Suites à termes dans un alphabet fini, Sém. Théorie des Nombres de Bordeaux, 1982–3, 25.01–25.16.Google Scholar
  33. [Rez1]
    B. Reznick, A new sequence with many properties, Abs. Amer. Math. Soc. 5 (1984), 16.Google Scholar
  34. [Rez2]
    B. Reznick, Some extremal problems for continued fractions, Ill. J. Math. 29 (1985), 261–279.Google Scholar
  35. [Sa]
    O. Salon, Quelles tuiles! (Pavages apériodiques du plan et automates bidimensionnels), Séminaire de Théorie des Nombres de Bordeaux, (2ème Série) 1 (1989), 1–25.Google Scholar
  36. [Sch]
    M. P. Schützenberger, On the definition of a family of automata, Information and Control 4 (1961), 245–270.CrossRefGoogle Scholar
  37. [Sl]
    N. J. A. Sloane, A handbook of integer sequences, Academic Press, 1973.Google Scholar
  38. [SS]
    A. Salomaa and M. Soittola, Automata-theoretic aspects of formal power series, Springer-Verlag, 1978.Google Scholar
  39. [St]
    M. A. Stern, Über eine zahlentheoretische Funktion, J. reine angew. Math. 55 (1858), 193–220.Google Scholar
  40. [Tap]
    T. Tapsoba, Thèse de troisième cycle, Université d'Aix-Marseille II, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Jean-Paul Allouche
    • 1
  • Jeffrey Shallit
    • 2
  1. 1.C. N. R. S. (U. R. A. 226) Mathématiques et InformatiqueTalence CedexFrance
  2. 2.Mathematics and Computer ScienceDartmouth CollegeHanoverUSA

Personalised recommendations