A note on the almost-everywhere hierarchy for nondeterministic time

  • Eric Allender
  • Richard Beigel
  • Ulrich Hertrampf
  • Steven Homer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 415)

Abstract

We present an a.e. complexity hierarchy for nondeterministic time, and show that it is essentially the best result which can be proved using relativizable proof techniques.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BS-85]
    J. Balcázar and U. Schöning, Bi-immune sets for complexity classes, Mathematical Systems Theory 18, 1–10.Google Scholar
  2. [Bu-89]
    G. Buntrock, Logarithmisch platzbeschränkte Simulationen, Dissertation, Technische Universität Berlin.Google Scholar
  3. [Co-73]
    S. Cook, A hierarchy for nondeterministic time complexity, Journal of Computer and System Sciences 7, 343–353.Google Scholar
  4. [CR-73]
    S. Cook and R. Reckhow, Time-bounded random access machines, Journal of Computer and System Sciences 7, 354–375.Google Scholar
  5. [FS-89]
    L. Fortnow and M. Sipser, Probabilistic computation and linear time, Proc. 21st IEEE FOCS Conference, pp. 148–156.Google Scholar
  6. [Fü-84]
    M. Fürer, Data structures for distributed counting, Journal of Computer and System Sciences 28, 231–243.Google Scholar
  7. [GHS-87]
    J. Geske, D. Huynh, and A. Selman, A hierarchy theorem for almost everywhere complex sets with application to polynomial complexity degrees, Proc. 4th Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science 247, Springer Verlag, Berlin, pp. 125–135.Google Scholar
  8. [GHS-89]
    J. Geske, D. Huynh, and J. Seiferas, A note on almost-everywhere-complex sets and separating deterministic-time-complexity classes, Technical Report, University of Rochester.Google Scholar
  9. [HS-65]
    J. Hartmanis and R. Stearns, On the computational complexity of algorithms, Transactions of the AMS 117, 285–306.Google Scholar
  10. [HS-66]
    F. Hennie and R. Stearns, Two-tape simulation of multitape Turing machines, J. ACM 13, 533–546.Google Scholar
  11. [KV-88]
    M. Karpinski and R. Verbeek, Randomness, provability, and the separation of Monte Carlo time and space, Lecture Notes in Computer Science 270, pp. 189–207.Google Scholar
  12. [Lo-82]
    T. Long, Strong nondeterministic polynomial-time reductions, Theoretical Computer Science 21, 1–25.Google Scholar
  13. [RS-81]
    C. Rackoff and J. Seiferas, Limitations on separating nondeterministic complexity classes, SIAM J. Comp. 10, 742–745.Google Scholar
  14. [Ve-89]
    R. Verbeek, personnal communication.Google Scholar
  15. [Zá-83]
    S. Zák, A Turing machine hierarchy, Theoretical Computer Science 26, 327–333.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Eric Allender
    • 1
  • Richard Beigel
    • 2
  • Ulrich Hertrampf
    • 3
  • Steven Homer
    • 4
  1. 1.Department of Computer ScienceRutgers UniversityNew BrunswickUSA
  2. 2.Department of Computer ScienceYale UniversityNew HavenUSA
  3. 3.Institut für InformatikUniversität WürzburgWürzburgFederal Republic of Germany
  4. 4.Department of Computer ScienceBoston UniversityBostonUSA

Personalised recommendations