Computer algebra application for investigating integrability of nonlinear evolution systems

  • V. P. Gerdt
  • A. B. Shabat
  • S. I. Svinolupov
  • A.Yu. Zharkov
Applications And Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 378)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhiber A.V., Shabat A.B. (1979). Klein-Gordon equation with nontrivial group. DNA SSSR 247, 1103 (in Russian).Google Scholar
  2. 2.
    Svinolupov S.I., Sokolov V.V. (1982). On the evolution equations with nontrivial conservation laws. Funct. Anal. 16,86 (in Russian).Google Scholar
  3. 3.
    Svinolupov S.I. (1985). Second order evolution equations possesing metries. Usp. Mat. Nauk 40,263 (in Russian).Google Scholar
  4. 4.
    Mikhailov A.V., Shabat A.B. (1985). Integrability conditions for system of two equations of form u t=A(u)u xx+F(u,u x ) I. Theor. &Math.Phys. 62,163 (in Russian).Google Scholar
  5. 4a.
    Mikhailov A.V., Shabat A.B. (1986). Integrability conditions for system of two equations of form u t=A(u)u xx+F(u,u x ) II. Theor.& Math. Phys. 66, 47 (in Russian).Google Scholar
  6. 5.
    Shabat A.B., Yamilov R.I. (1985). On complete list of integrable equations of form: iu t=u xx+f(u,v,u x,v x ),-iv t=v xx+g(u,v,u x,v x ). Preprint BF AN SSSR, Ufa (in Russian).Google Scholar
  7. 6.
    Ibragimov N.H., Shabat A.B. (1984). On infinite Lie-Bäcklund algebras. Funct. Anal. 14,79 (in Russian).Google Scholar
  8. 7.
    Fokas A.S. (1987). Symmetries and integrability. Stud. Appl. Math. 77,253.Google Scholar
  9. 8.
    Sokolov V.V., Shabat A.B. (1984). Classification of integrable evolution equations. Math. Phys. Rev. 4,221, New York.Google Scholar
  10. 9.
    Mikhailov A.V., Shabat A.B., Yamilov R.I. (1987). Symmetry approach to classification of nonlinear equations. Complete list of integrable systems. Usp. Mah. Nauk 42,3 (in Russian).Google Scholar
  11. 10.
    Buchberger B., Collins G.E., Loos R. (eds.) (1983). Computer algebra: symbolic and algebraic computation, 2nd edition, Vienna: Springer-Verlag.Google Scholar
  12. 11.
    Zharkov A.Yu., Shvachka A.B. (1983). REDUCE-2 program for investigating integrability of nonlinear evolution equations. Preprint JINR, R11-83-914, Dubna (in Russian).Google Scholar
  13. 12.
    Gerdt V.P., Shvachka A.B., Zharkov A.Yu. (1985). FORMINT-a program for classification of integrable nonlinear evolution equations. Comp. Phys. Comm. 34,303.CrossRefGoogle Scholar
  14. 12a.
    Gerdt V.P., Shvachka A.B., Zharkov A.Yu. (1985). Computer algebra application for classification of integrable nonlinear evolution equations. J. Symb. Comp. 1, 101.Google Scholar
  15. 13.
    Zakharov V.E., Manakov S.V., Novikov S.P., Pitaevsky L.P. (1980). Theory of solitons. The inverse problem method, Moscow, Nauka (in Russian).Google Scholar
  16. 14.
    Gelfand I.M., Manin Yu.I., Shubin M.A. (1976). Pouasson brackets and nel of variational derivative in formal variational calculus. Funct. Anal. 10,30 (in Russian).Google Scholar
  17. 15.
    Bahr K.A. (1973). FORMAC 73 user's manual, Darmstadt: GMD/IFV.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • V. P. Gerdt
    • 1
  • A. B. Shabat
    • 2
  • S. I. Svinolupov
    • 2
  • A.Yu. Zharkov
    • 3
  1. 1.Laboratory of Computing Techniques and AutomationJoint Institute for Nuclear ResearchMoscowUSSR
  2. 2.Bashkir Branch of the USSR Academy of SciencesUfaUSSR
  3. 3.Saratov State UniversitySaratovUSSR

Personalised recommendations