Primary ideal decomposition

  • Heinz Kredel
Polynomial Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 378)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9 References

  1. B. Buchberger 1965, ”Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal”, Dissertation, University of Insbruck 1965.Google Scholar
  2. B. Buchberger 1970, ”Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems”, Aequ. Math. 4, pp. 374–383.CrossRefGoogle Scholar
  3. B. Buchberger 1985, ”Gröbner bases: An algorithmic method in polynomial ideal theory”, In:(N.K.Bose ed.) Progress, directions and open problems in multidimensional systems theory. pp. 184–232. Dordrecht: Reidel Publ. Comp. (1985)Google Scholar
  4. W. Böge, R. Gebauer, H. Kredel 1985, ”Gröbner bases using SAC-2” Proc. EUROCAL '85 European Conference on Computer Algebra. Linz 1985, Springer Lect. Notes Comp. Sci. 204, pp. 272–274, 1986.Google Scholar
  5. W. Böge, R. Gebauer, H. Kredel 1986, ”Some Examples for Solving Systems of Algebraic Equations by Calculating Gröbner Bases.” J. Symbolic Computation (1986) 1, pp. 83–98.Google Scholar
  6. G. E. Collins, R. G. Loos 1980, ”SAC-2 — Symbolic and Algebraic Computation version 2, a computer algebra system, ALDES — ALgorithm DEScription language”, ACM SIGSAM Bulletin 14, No. 2, 1980.Google Scholar
  7. R. Gebauer, H. Kredel 1983, ”Buchberger algorithm system” Technical Report, Institut für Angewandte Mathematik, Universität Heidelberg, 1983 (see also ACM SIGSAM Bulletin 18, No. 1, 19).Google Scholar
  8. R. Gebauer, H. Kredel 1984, ”Real solution System for algebraic equations” Technical Report, Institut für Angewandte Mathematik, Universität Heidelberg, 1984.Google Scholar
  9. P. Gianni, B. Trager, G. Zacharias 1986, ”Gröbner Bases and Primary Decomposition of Polynomial Ideals” J. Symbolic Computation, to appear 1988.Google Scholar
  10. W. Gröbner 1968, 1970, ”Algebraische Geometrie I, II”, Bibliographisches Institut, Mannheim 1968, 1970.Google Scholar
  11. G. Hermann 1926, ”Die Frage der endlich vielen Schritte in der Theorie der Polynomideale” Math. Ann. Bd. 95 (1926) P. 736–788.CrossRefGoogle Scholar
  12. E. Kaltofen 1982, ”Factorization of polynomials” in B. Buchberger, G. E. Collins, R. G. Loos, ”Computer algebra — symbolic and algebraic computation” Vienna: Springer, 1982.Google Scholar
  13. A. Kandri-Rody 1984, ”Effective Methods in the Theory of Polynomialideals”, Ph. D. Thesis, RPI, Troy, NY, May 1984.Google Scholar
  14. H. Kredel 1985, ”Über die Bestimmung der Dimension von Polynomidealen”, Diplomarbeit, Fakultät für Mathematik Universität Heidelberg, 1985.Google Scholar
  15. H. Kredel, V. Weispfenning 1986, ”Computing Dimension and Independent Sets for Polynomial Ideals” J. Symbolic Computation, to appear 1988.Google Scholar
  16. E. Lasker 1905, ”Zur Theorie der Moduln und Ideale” Math. Ann. Bd. 60 (1905) P. 20–116.CrossRefGoogle Scholar
  17. D. Lazard 1982, ”Commutative algebra and computer algebra”, Springer Lect. Notes Comp. Sci. 144, P. 40–48.Google Scholar
  18. D. Lazard 1985, ”Ideal Bases and Primary Decomposition: Case of Two Variables” J. Symbolic Computation (1985) 1, pp. 261–270.Google Scholar
  19. R. Loos 1982, ”Computing in Algebraic Extensions” in B. Buchberger, G. E. Collins, R. G. Loos, ”Computer algebra — symbolic and algebraic computation” Vienna: Springer, 1982.Google Scholar
  20. F. S. Macaulay 1916, ”Algebraic Theory of modular systems” Cambridge Tracts in Mathematics, Vol. 19, Cambridge 1916.Google Scholar
  21. E. Noether 1921, ”Ideal Theorie in Ringbereichen” Math. Ann. Bd. 83 (1921) P. 24–66.CrossRefGoogle Scholar
  22. B. Renschuch 1976, ”Elementare und praktische Idealtheorie” VEB Deutscher Verlag der Wissenschaften, Berlin, 1976.Google Scholar
  23. R. Schrader 1976, ”Zur konstruktiven Idealtheorie” Diplomarbeit, Mathematisches Institut II, Universität Karlsruhe, 1976.Google Scholar
  24. A. Seidenberg 1974, ”Constructions in Algebra”, Trans. Amer. Math. Soc. 197, 1974, pp. 273–313.Google Scholar
  25. W. L. Trinks 1978, ”Über Buchbergers Verfahren Systeme algebraischer Gleichungen zu lösen”, J. Number Theor. 10, pp. 475–488, 1978.CrossRefGoogle Scholar
  26. F. Winkler, B. Buchberger 1985, F. Lichtenberg, H. Rolletschek 1985, ”An algorithm for constructing canonical bases (Gröbner bases) of polynomial ideals”. ACM/TOMS 11, pp. 66–78, 1985.Google Scholar
  27. v.d. Waerden 1971, 1967, ”Algebra I, II” Springer, Heidelberg 1971, 1967.Google Scholar
  28. O. Zariski, P. Samuel 1958, ”Commutative algebra”, vol I, van Nostrand, 1958.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Heinz Kredel
    • 1
  1. 1.Gesellschaft für SchwerionenforschungDarmstadtFRG

Personalised recommendations