Boundary value problems for the laplacian in the Euclidean space solved by symbolic computation

  • F. Brackx
  • H. Serras
Applications And Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 378)

Abstract

By means of the symbolic manipulation language REDUCE, a complete set of harmonic polynomials in Euclidean space is constructed. The method relies on the theory of monogenic functions defined in ℝn+1 and taking values in a Clifford algebra An. An approximate solution for the Dirichlet and Neumann problems in the form of a harmonic polynomial may be obtained. The method is applied to solying a Dirichlet problem in a cube.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.W. WILKERSON, Symbolic Computation and the Dirichlet problem, Eurosam 84, Lecture Notes in Computer Science 174, 59–63.Google Scholar
  2. [2]
    S. ZAREMBA, L'équation biharmonique et une classe remarquable de fonctions fondamentales harmoniques, Bull. Inter. de l'Acad. Scie. de Cracovie (1907), 147–196.Google Scholar
  3. [3]
    S. BERGMANN, Über die Entwicklung der harmonischen Funktionen der Ebene und des Raumes nach Orthogonalfunktionen, Math. Annalen 86 (1922), 238–271.CrossRefGoogle Scholar
  4. [4]
    J. WALSH, The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions, Amer. Math. Soc. Bull. 35 (1929), 499–544.Google Scholar
  5. [5]
    F. BRACKX, R. DELANGHE and F. SOMMEN, Clifford Analysis, Pitman London, 1982Google Scholar
  6. [6]
    F. BRACKX, D. CONSTALES, R. DELANGHE and H. SERRAS, Clifford Algebra with REDUCE, Rend. Circ. Mat. Palermo, Ser. II, 16, (1987), 11–19.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • F. Brackx
    • 1
  • H. Serras
    • 1
  1. 1.Seminar of Mathematical AnalysisState University of GhentGentBelgium

Personalised recommendations