Computer algebra application for determining local symmetries of differential equations

  • R. N. Fedorova
  • V. V. Kornyak
Applications And Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 378)


  1. 1.
    L.V. Ovsiannikov (1978). Group Analysis of Differential Equations. Nauka, Moscow, p. 400 (in Russian).Google Scholar
  2. 2.
    N.H. Ibragimov (1983). Trasformation Groups in Mathematical Physics. Nauka, Moscow, p. 286 (in Russian).Google Scholar
  3. 3.
    V.P. Eliseev, R.N. Fedorova, V.V., Kornyak (1985). A REDUCE Program for Determining Point and Contact Lie Symmetries of Differential Equations. Comp. Phys. Comm. v. 36, No. 4,p. 383–389.CrossRefGoogle Scholar
  4. 4.
    R.N. Fedorova, V.V. Kornyak (1987). A REDUCE Program for Calculation of Determining Equation of Lie-Backlund Symmetries of Differential Equation. JINR, P11-87-19, Dubna (in Russian).Google Scholar
  5. 5.
    R.N. Fedorova, V.V. Koryak (1986). Determination of Lie-Backlund Symmetries of Differential Equations Using FORMAC. Comp. Phys. Comm. v. 39, N1, p. 93–103.CrossRefGoogle Scholar
  6. 6.
    R.N. Fedorova, V.V. Koryak (1985). Application of Algebraic Computation to Determination of Lie-Backlund Symmetries of Differential Equations. In: International Conference on Computer Algebra and its Applications in Theoretical Physics. Dubna, p. 248–261 (in Russian).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • R. N. Fedorova
    • 1
  • V. V. Kornyak
    • 2
  1. 1.Laboratory of Computing Techniques and AutomationJoint Institute for Nuclear ResearchMoscowUSSR
  2. 2.Institute of Mathematics AN UkrSSRKiev 4USSR

Personalised recommendations