Advertisement

New simulations between CRCW PRAMs

  • Bogdan S. Chlebus
  • Krzysztof Diks
  • Torben Hagerup
  • Tomasz Radzik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 380)

Abstract

This paper is part of a continued investigation of the relative power of different variants of the CRCW PRAM with infinite global memory. The models that we consider are the standard Priority and Common PRAMs, together with the less well-known Collision+ and Tolerant PRAMs. We describe several new results for the simulation of an n-processor Priority PRAM on weaker machines:
  1. (1)

    on an n-processor Tolerant PRAM: Slowdown \(O\left( {\sqrt {log{\text{ }}n} } \right)\);

     
  2. (2)

    on an n-processor Collision+ PRAM: Slowdown O(log log n log(3)n);

     
  3. (3)

    on a Common PRAM with kn processors (k≤log n/2): Slowdown O(log n/(k log(log n/k)));

     
  4. (4)

    on a Tolerant PRAM with kn processors (2≤k≤log n): Slowdown O(log n/log k);

     
  5. (5)

    on a randomized n-processor Collision+ PRAM: Expected slowdown O(log log n).

     

Keywords

Active Node Global Memory Partitioning Problem Input Array Main Processor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CDHR]
    B. S. Chlebus, K. Diks, T. Hagerup and T. Radzik: “Efficient Simulations between Concurrent-Read Concurrent-Write PRAM Models”. 13th Symposium on Mathematical Foundations of Computer Science (1988), Springer Lecture Notes in Computer Science 324, 231–239.Google Scholar
  2. [FRW1]
    F. E. Fich, P. Ragde and A. Wigderson: “Relations Between Concurrent-Write Models of Parallel Computation”. SIAM Journal on Computing 17 (1988), 606–627.CrossRefGoogle Scholar
  3. [FRW2]
    F. E. Fich, P. Ragde and A. Wigderson: “Simulations Among Concurrent-Write PRAMs”. Algorithmica 3 (1988), 43–51.CrossRefGoogle Scholar
  4. [G]
    L. M. Goldschlager: “A Universal Interconnection Pattern for Parallel Computers”. Journal of the ACM 29 (1982), 1073–1086.CrossRefGoogle Scholar
  5. [GR]
    V. Grolmusz and P. Ragde: “Incomparability In Parallel Computation”. Proceedings, 28th Annual Symposium on Foundations of Computer Science (1987), 89–98.Google Scholar
  6. [K]
    L. Kučera: “Parallel Computation and Conflicts in Memory Access”. Information Processing Letters 14 (1982), 93–96.CrossRefGoogle Scholar
  7. [LY]
    M. Li and Y. Yesha: “Separation and Lower Bounds for ROM and Nondeterministic Models of Parallel Computation”. Information and Computing 73 (1987), 102–128.CrossRefGoogle Scholar
  8. [R]
    P. Ragde, personal communication, 1988.Google Scholar
  9. [RSSW]
    P. Ragde, W. Steiger, E. Szemerédi and A. Wigderson: “The Parallel Complexity of Element Distinctness is Ω(√log n)”. SIAM Journal on Discrete Mathematics 1 (1988), 399–410.CrossRefGoogle Scholar
  10. [SV]
    Y. Shiloach and U. Vishkin: “An O(log n) Parallel Connectivity Algorithm”. Journal of Algorithms 3 (1982), 57–67.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Bogdan S. Chlebus
    • 1
  • Krzysztof Diks
    • 1
  • Torben Hagerup
    • 2
  • Tomasz Radzik
    • 3
  1. 1.Instytut InformatykiUniwersytet Warszawski, PKiN, p. 850WarszawaPoland
  2. 2.Fachbereich InformatikUniversität des SaarlandesSaarbrückenWest Germany
  3. 3.Computer Science DepartmentStanford UniversityStanford

Personalised recommendations