Advertisement

On the finite degree of ambiguity of finite tree automata

  • Helmut Seidl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 380)

Abstract

The degree of ambiguity of a finite tree automaton A, da(A), is the maximal number of different accepting computations of A for any possible input tree. We show: it can be decided in polynomial time whether or not da(A)<∞. We give two criteria characterizing an infinite degree of ambiguity and derive the following fundamental properties of an finite tree automaton A with n states and rank L>1 having a finite degree of ambiguity: for every input tree t there is a input tree t1 of depth less than 22n·n! having the same number of accepting computations; the degree of ambiguity of A is bounded by 222·log(L+1)·n.

Keywords

Polynomial Time Finite Automaton Computation Path Input Tree Tree Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Aho74]
    A.V. Aho, J.E. Hopcroft, J.D. Ullman: The design and analysis of computer algorithms. Addison-Wesley 1974Google Scholar
  2. [Ba88]
    G. Baron: Estimates for bounded automata. Technische Universitaet Graz und oesterreichische Computer Gesellschaft, Report 253, part 2, June 1988Google Scholar
  3. [Cou78]
    B. Courcelle: A representation of trees by languages, part II. Theor. Comp. Sci. 7 (1978) pp. 25–55CrossRefGoogle Scholar
  4. [GeStei84]
    F. Gecseg, M. Steinby: Tree automata. Akademiai Kiado, Budapest, 1984Google Scholar
  5. [Kui88]
    W. Kuich: Finite automata and ambiguity. Technische Universitaet Graz und oesterreichische Computer Gesellschaft, Report 253, part 1, June 1988Google Scholar
  6. [Paul78]
    W. Paul: Komplexitaetstheorie. B.G. Teubner Verlag Stuttgart 1978Google Scholar
  7. [Sei89]
    H. Seidl: Deciding equivalence of finite tree automata. Proc. STACS'89, LNCS 349, pp. 480–492Google Scholar
  8. [SteHu81]
    R. Stearns, H. Hunt III: On the equivalence and containment problems for unambiguous regular expressions, regular grammars and finite automata. 22th FOCS (1981) pp. 74–81Google Scholar
  9. [SteHu85]
    R. Stearns, H. Hunt III: On the equivalence and containment problems for unambiguous regular expressions, regular grammars and finite automata. SIAM J. Comp. 14 (1985) pp. 598–611CrossRefGoogle Scholar
  10. [WeSei86]
    A. Weber, H. Seidl: On the degree of ambiguity of finite automata. MFCS 1986, Lect. Notes in Comp. Sci. 233, pp. 620–629Google Scholar
  11. [WeSei88]
    A. Weber, H. Seidl: On finitely generated monoids of matrices with entries in N. Preprint 1988Google Scholar
  12. [We87]
    A. Weber: Ueber die Mehrdeutigkeit und Wertigkeit von endlichen Automaten und Transducern. Doct. Thesis Frankfurt/Main 1987Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Helmut Seidl
    • 1
  1. 1.Fachbereich InformatikUniversitaet des SaarlandesSaarbrueckenWest Germany

Personalised recommendations