Advertisement

Complexity classes with complete problems between P and NP-C

  • Carme Àlvarez
  • Josep Díaz
  • Jacobo Torán
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 380)

Abstract

We study certain language classes located between P and NP that are defined by polynomial time machines with bounded amount of nondeterminism. We observe that these classes have complete problems, and find characterizations of the classes using robust machines with bounded access to the oracle, and in terms of nondeterministic complexity classes with polylog running time. We also study the relationship of these classes to P and NP.

Keywords

Polynomial Time Turing Machine Computation Path Complete Problem Oracle Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ad 79]
    L. Adleman: Time, Space and Randomness. Tech Report MIT/LCS/TM-131, MIT 1979.Google Scholar
  2. [Al 85]
    E. Allender: Invertible functions. Ph.D. dissertation, Georgia Institute of Technology, 1985.Google Scholar
  3. [Ba,Gi,So 75]
    I. Baker, J. Gill, R. Solvay: Relativization of the P=?NP question. SIAM J. Comput., 4, 1975, 431–442.CrossRefGoogle Scholar
  4. [Ba 84]
    J.L. Balcázar: En torno a oraculos que ciertas maquinas consultan, y las espantables consecuencias a que ello da lugar Ph.D. dissertation, FIB. 1984.Google Scholar
  5. [Ba,Di,Ga 88]
    J.L. Balcázar, J.Diaz, J.Gabarró: Structural Complexity, (Vol.1) 1988, Springer-Verlag.Google Scholar
  6. [Be 78]
    P. Berman: Relationships between density and deterministic complexity of NP-complete languages. Proceedings 5th ICALP, 1978, 63–72.Google Scholar
  7. [Bo 74]
    R. Book: Tally languages and complexity classes. Information and Control, 1974, 186–193.Google Scholar
  8. [Ca,He 89]
    J. Cai, L. Hemachandra: On the power of parity. Symp. Theor. Aspects of Comput. Sci. 1989, 229–240.Google Scholar
  9. [Gi 77]
    J. Gill: Computational complexity of probabilistic Turing machines. SIAM J. Comput., 6, 1977, 675–695.CrossRefGoogle Scholar
  10. [Ha,He 86]
    J. Hartmanis, L. Hemachandra: Complexity classes without machines: on complete languages for UP. 13th. ICALP, 1986, 123–135.Google Scholar
  11. [Ha,He 87]
    J. Hartmanis, L. Hemachandra: One-way functions, robustness, and the nonisomorphism of NP-complete sets. 2nd Structure in Complexity Theory Conference, 1987, 160–175.Google Scholar
  12. [He,We 89]
    L. Hemachandra, G. Wechsung: Using randomness to characterize the complexity of computation. To appear in IFIP 89.Google Scholar
  13. [Im,Na 88]
    R. Impagliazzo, M. Naor: Decision Trees and Downward Closures. 3rd. Structure in Complexity Theory Conference, 1988, 29–38.Google Scholar
  14. [Jo,La 76]
    N. Jones, W. Laaser: Complete problems for deterministic polynomial time. Theoretical Computer Science, 3, 1976, 105–118.CrossRefGoogle Scholar
  15. [Ki,Fi 84]
    C. Kintala, P. Fisher: Refining nondeterminism in relativized complexity classes. SIAM J. Comput., 13, 1984, 329–337.CrossRefGoogle Scholar
  16. [Ko 87]
    K. Ko: On helping by robust oracle machines. Theoretical Computer Science, 52, 1987, 15–36.CrossRefGoogle Scholar
  17. [Kö,Sc,To,To 89]
    J. Köbler, U. Schöning, S. Toda, J. Torán: Turing machines with few accepting computations and low sets for PP. To appear in 4th Structure in Complexity Theory Conference, 1989.Google Scholar
  18. [La 75]
    R. Ladner: On the structure of polynomial time reducibility. J.ACM, 22 1975, 155–171.CrossRefGoogle Scholar
  19. [Ma 80]
    S. Mahaney: Sparse complete sets for NP: solution of a conjecture of Berman and Hartmanis. In Proceedings IEEE Symposium on Foundations of Computer Science, 1980, 54–60.Google Scholar
  20. [Sc,Bo 84]
    U. Schöning, R. Book: Immunity, relativizations, and nondeterminism. SIAM J. Comput., 9, 1984, 46–53.Google Scholar
  21. [Sc 85]
    U. Schöning: Robust algorithms: a different approach to oracles. Theoretical Computer Science, 40, 1985, 57–66.CrossRefGoogle Scholar
  22. [Sc 86]
    U. Schöning: Complexity and Structure. Lecture Notes in Computer Science, 1986, Springer-Verlag.Google Scholar
  23. [Sc 88]
    U. Schöning: Robust oracle machines. Proceedings 13th Math. Fundations of Computer Science, 1988, 93–107.Google Scholar
  24. [Va 76]
    L. Valiant: Relative complexity of checking and evaluating. Information Processing Letters, 5, 1976, 20–23.CrossRefGoogle Scholar
  25. [Xu,Do,Bo 83]
    M. Xu, J. Doner, R. Book: Refining nondeterminism in relativizations of complexity classes. JACM 30, 1983, 677–685.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Carme Àlvarez
    • 1
  • Josep Díaz
    • 1
  • Jacobo Torán
    • 1
  1. 1.Departament de Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelona

Personalised recommendations