A language for the p-ary trees

Application to the dynamic virtual hashing methods
  • Gerard LEVY
Basic Data Structures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 367)

Abstract

Dynamic (virtual) hashing methods (DVH) manage very large files by the means of an index which is, at least partially, stored in the core. Usually this index is a binary tree (b-t), and different implementations of DVH are based on the representations of the b-t using pointers or links to descendants or leaves. We show that it is also possible to represent a p-ary tree (p-t), and thus a b-t, with a word of a certain language, and to use this pointerless representation to perform all the operations needed by a DVH generalized to p-t's. We present this language, we study its operative properties, and we indicate how to perform the operations of search, insertion,... We compare our representation to the most usual ones, and we analyze the complexity of some algorithms in relation with this representation.

Key words

p-ary trees representation of trees by words languages hashing methods complexity of algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    LARSON Per-Ake, "Dynamyc hashing", BIT 18 (1978), 184–201.Google Scholar
  2. [2]
    LITWIN Witold. "Virtual hashing, a dynamically changing hashing", 4 th. Int. Conf on VLDB, Berlin (sept 1978), 517–23.Google Scholar
  3. [3]
    FAGIN R., NIEVERGELT J., PIPPENGER N., STRONG H.R., "Extensible hashing — a fast access method for dynamic files", ACM-TODS, 4, 3, (sept. 1979), 315–344.Google Scholar
  4. [4]
    KOUAKOU Jean. These de Troisieme Cycle, Universite de Paris IX — 1986.Google Scholar
  5. [5]
    REGNIER Mireille, Thèse de Troisième Cycle, Université de Paris XI, 1983.Google Scholar
  6. [6]
    FLAJOLET P., REGNIER M., SOTTEAU D., "Algebraic methods for tries statistics", Ann. Discrete Math. 25 (1985), 145–188.Google Scholar
  7. [7]
    LITWIN W., ZEGOUR D., LEVY G., "Multilevel trie hashing", EDBT 88., Venice.Google Scholar
  8. [8]
    ZEGOUR Djamal Eddine, Thèse Université de Paris-Dauphine, 1988.Google Scholar
  9. [9]
    LEVY Gérard, "Analyse des performances du p-hachage dynamique virtuel", Revue Modèles et Bases de Données (M.D.B.), No 6, 15–24.Google Scholar
  10. [10]
    Encyclopedia of Mathematics and its applications, Vol 17, Combinatorics and words, M. LOTHAIRE, Chap. 11: "words and tress", 1983, Addison-Wesley.Google Scholar
  11. [11]
    KNOTT Gary D., "A numbering system for binary trees", Comm. ACM,20 (1977), 113–115.Google Scholar
  12. [12]
    RUSKEY F., HU T.C., "generating binary trees lexicographically", SIAM J. COMP. 6 (1977), 745–758.Google Scholar
  13. [13]
    RUSKEY F., "Generating t-ary trees lexicographically", SIAM J. COMP. 7 (1978), 706–712.Google Scholar
  14. [14]
    ROTEM DORON, VAROL Y.L., "Generation of binary trees from ballot sequences", JACM 25 (1978), 396–404.Google Scholar
  15. [15]
    ZACKS S., RICHARDS D., "generating trees and other combinatorial objects lexicographically", SIAM J. COMP. 8 (1979), 73–81.Google Scholar
  16. [16]
    ZACKS S., "Lexicographically generation of ordered trees", Theoret. Comput.Sci. 10 (1980), 63–82.Google Scholar
  17. [17]
    PROSKUROWSKI A., "On generation of binary trees", JACM 27 (1980), 1–2.Google Scholar
  18. [18]
    SOLOMON M., FINKEL R.A., "A note on enumerating binary trees", JACM 27 (1980), 3–5.Google Scholar
  19. [19]
    LEVY G., LITWIN W., WANG Hong, "on generating binary and t-ary trees lexicographically", Note interne INRIA (1988).Google Scholar
  20. [20]
    LEVY Gerard, "Arbres homogenes et mots associes", Cahiers du centre de recherche IP9, Université de Paris-Dauphine (1985).Google Scholar
  21. [21]
    LEVY Gérard, "Etude de la complexité moyenne de deux algorithmes de reconnaissance des mots des arbres p-aires", to appear.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Gerard LEVY
    • 1
  1. 1.Université de Paris 9-DauphineParis Cedex 16France

Personalised recommendations