Compilation of ground term rewriting systems and applications (DEMO)

  • M. Dauchet
  • A. Deruyver
System Descriptions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 355)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BRAINERS: Tree-generating regular systems, Info and control (1969)Google Scholar
  2. [2]
    G.W. BRAMS: Reseaux de Petri:theorie et pratique, tomes 1&2, Masson, Paris (1983)Google Scholar
  3. [3]
    CHEW: An improved algorithm for computing with equations, 21st FOCS (1980)Google Scholar
  4. [4]
    DAUCHET, HEUILLARD, LESCANNE, TISON: The confluence of ground term tewriting systems is decidable,2nd LICS (1987)Google Scholar
  5. [5]
    DAUCHET & TISON: Tree automata and decidability in ground term rewriting systems FCT' 85 (LNCS no 199)Google Scholar
  6. [6]
    N.DERSHOWITZ, J.HSIANG,N.JOSEPHSON and D.PLAISTED: Associative-commutative rewriting, Proc. 10th IJCAI, LNCS 202 (1983)Google Scholar
  7. [7]
    GECSEG F. & STEINBY M: tree automata, Akadémiai Kiado, Budapest (1984)Google Scholar
  8. [8]
    HUET.G & OPPEN.D.: Equations and rewrite rules:a survey,in formal languages:perspective and open problems, Ed.Book R.,Academic Press (1980)Google Scholar
  9. [9]
    J.P.JOUANNAUD: Church-Rosser computations with equational term rewriting systems, Proc.4th Conf on Automata,Algebra and programming,LNCS 159 (1983)Google Scholar
  10. [10]
    C.KIRCHNER: Methodes et outils de conception systematique d'algorithmes d'unification dans les théories équationnelles, These d'etat de l'universite de Nancy I (1985)Google Scholar
  11. [11]
    S.R.KOSARAJU: Decidability of reachability in vector addition systems, Proc. 14th Ann.Symp.on Theory of Computing,267–281.(1982)Google Scholar
  12. [12]
    KOZEN: Complexity of finitely presented algebra, 9th ACM th. comp. (1977)Google Scholar
  13. [13]
    E.W. MAYR: An algorithm for the general Petri net reachability problem, Siam J Comput. 13 441.–460Google Scholar
  14. [14]
    NELSON & OPPEN: Fast decision algorithms based on congruence closure, JACM 27 (1980)Google Scholar
  15. [15]
    OYAMAGUCHI M.: The reachability problem for quasi-ground Term Rewriting Systems, Journal of Information Processing, vol 9, no4 (1986)Google Scholar
  16. [16]
    DERUYVER, À. and R. GILLERON, The reachability problem for ground TRS and some extensions, to appear in CAAP' 89 proceedings, Diaz editor, LNCS, Barcelona, march 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • M. Dauchet
    • 1
  • A. Deruyver
    • 1
  1. 1.LIFL (UA 369 CNRS) Universite des sciences et techniques de LILLE FLANDERS ARTOIS U.F.R. d' I.E.E.A. Bat. M3 59655Villeneuve d'Ascq CedexFrance

Personalised recommendations