Advertisement

Combining matching algorithms: The regular case

  • Tobias Nipkow
Regular Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 355)

Abstract

The problem of combining matching algorithms for equational theories with disjoint signatures is studied. It is shown that the combined matching problem is in general undecidable but that it becomes decidable if all theories are regular. For the case of regular theories an efficient combination algorithm is developed. As part of that development we present a simple algorithm for solving the word problem in the combination of arbitrary equational theories with disjoint signatures.

Keywords

Equivalence Class Word Problem Matching Algorithm Function Symbol Equational Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.-J. Bürckert: Some Relationships Between Unification, Restricted Unification and Matching, in: Proc. CADE-8, LNCS 230 (1986), 514–524.Google Scholar
  2. [2]
    H.-J. Bürckert: Matching — A Special Case of Unification?, Tech. Rep., Universität Kaiserslautern (1987).Google Scholar
  3. [3]
    N. Dershowitz, Z. Manna: Proving Termination with Multiset Orderings, CACM 22 (1979), 465–476.Google Scholar
  4. [4]
    K. Futatsugi, J.A. Goguen, J.-P. Jouannaud, J. Meseguer: Principles of OBJ2, in: Proc. 12th POPL (1985), 52–66.Google Scholar
  5. [5]
    S.J. Garland, J.V. Guttag: An Overview of LP, The Larch Prover, in: Proc. RTA-89, LNCS (1989).Google Scholar
  6. [6]
    A. Herold: Combination of Unification Algorithms, in: Proc. CADE-8, LNCS 230 (1986), 450–469.Google Scholar
  7. [7]
    A. Herold: Combination of Unification Algorithms in Equational Theories, Ph.D. Thesis, Fachbereich Informatik, Universität Kaiserslautern (1987).Google Scholar
  8. [8]
    G. Huet: Confluent Reductions: Abstract properties and Applications to Term Rewriting Systems, JACM 27, 4 (1980), 797–821.Google Scholar
  9. [9]
    G. Huet, D.C. Oppen: Equations and Rewrite Rules — A Survey, in: Formal Languages: Perspectives and Open Problems, R. Book (ed.), Academic Press (1982).Google Scholar
  10. [10]
    J.-P. Jouannaud, H. Kirchner: Completion of a Set of Rules Modulo a Set of Equations, SIAM Journal of Computing 15 (1986), 1155–1194.Google Scholar
  11. [11]
    C. Kirchner: Méthodes et outils de conception systématique d'algorithmes d'unification dans les théories équationnelles, Thèse d'état de l'Université de Nancy I (1985).Google Scholar
  12. [12]
    C. Kirchner, personal communication, June 1988.Google Scholar
  13. [13]
    P. Lescanne: REVE: A Rewrite Rule Laboratory, in: Proc. CADE-8, LNCS 230 (1986), 695–696.Google Scholar
  14. [14]
    G.E. Peterson, M.E. Stickel: Complete Sets of Reductions for Some Equational Theories, JACM, 28, 2 (1981), 233–264.Google Scholar
  15. [15]
    M. Schmidt-Schauß: Unification in a Combination of Arbitrary Disjoint Equational Theories, Tech. Rep., Universität Kaiserslautern (1987).Google Scholar
  16. [16]
    J.H. Siekmann: Universal Unification, in: Proc. CADE-7, LNCS 170 (1984).Google Scholar
  17. [17]
    E. Tidén: Unification in Combinations of Collapse-Free Theories with Disjoint Sets of Function Symbols, in: Proc. CADE-8, LNCS 230 (1986), 431–449.Google Scholar
  18. [18]
    E. Tidén: First-Order Unification in Combinations of Equational Theories, PhD Thesis, Department of Numerical Analysis and Computing Science, The Royal Institute of Technology, Stockholm (1986).Google Scholar
  19. [19]
    K. Yelick: Unification in Combinations of Collapse-Free Regular Theories, JSC 3 (1987), 153–181.Google Scholar
  20. [20]
    P. Szabó: Unifikationstheorie erster Ordnung, Ph.D. Thesis, Universität Karlsruhe (1982).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Tobias Nipkow
    • 1
  1. 1.Laboratory for Computer Science MITCambridge

Personalised recommendations