Simulation of Turing machines by a left-linear rewrite rule

  • Max Dauchet
Regular Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 355)


We prove in this paper that for every Turing machine there exists a left-linear, variable preserving and non-overlapping rewrite rule that simulates its behaviour. The main corollary is the undecidability of the termination for such a rule. If we suppose that the left-hand side can be unified with an only subterm of the right-hand side, then termination is decidable.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Book, R.V. (1987) Thue Systems as Rewriting Systems. J. Symbolic computation, 3 p. 39–68.Google Scholar
  2. Dauchet, M., Devienne Ph. & Lebègue P. (1988). Décidabilité de la terminaison d'une règle de réécriture en tête, Journées AFCET-GROPLAN, Birgre+Globule 59, p. 231–237.Google Scholar
  3. Dauchet, M. (1988). Termination of rewriting is undecidable in the one-rule case. MFCS 1988, Carlsbad. Springer Lec. notes Comp. Sci. 324, p. 262–268.Google Scholar
  4. Dershowitz, N. (1987). Termination. J. Symbolic computation, 3, p. 69–116.Google Scholar
  5. Devienne Ph. & Lebègue P. (1986). Weighted graphs, a tool for logic programming, CAAP 86, Nice, Springer Lec. notes Comp. Sci. 214, p.100–111.Google Scholar
  6. Devienne Ph. (1988). Weighted Graphs, a tool for expressing the Behaviour of Recursive Rules in Logic Programming, in proceeding of FGCS' 88, Tokyo. 397–404. Extended paper to appear in TCS, special issue.Google Scholar
  7. Huet, G. Personal communication (1988).Google Scholar
  8. Huet, G. & Lankfork D.S. (1978). On the uniform halting problem for term rewriting systems. Rapport Laboria 283, INRIA.Google Scholar
  9. Huet, G. & Oppen D. C. (1980). Equations and rewrite rules: A survey, in R. V. Book, ed., New York: Academic Press. Formal Language Theory: Perspectives and Open Problems, pp. 349–405.Google Scholar
  10. Jouannaud, J. P. (1987). Editorial of J. Symbolic computation, 3, p. 2–3.Google Scholar
  11. Jouannaud, J. P. & Kirchner, H. Construction d'un plus petit ordre de simplification. RAIRO Informatique Théorique/ Theorical Informatics, 18-3, p. 191–207.Google Scholar
  12. Lankford, D.S. & Musser, D.R. (1978). A finite termination criterion. Unpublished draft, Information Sciences Institut, University of South California.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Max Dauchet
    • 1
  1. 1.LIFL (URA 369-CNRS)Université de Lille-Flandres-Artois. UFR IEEAVilleneuve d'Ascq CedexFrance

Personalised recommendations