Narrowing with built-in theories

  • Alexander Bockmayr
Submitted Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 343)


Rewriting and narrowing provide a nice theoretical framework for the integration of logic and functional programming. For practical applications however narrowing is still much too inefficient. In this paper we show how narrowing modulo equality theories may considerably increase the efficiency of the narrowing process.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bellia/Levi 86]
    M. Bellia, G. Levi: The Relation between Logic and Functional languages: A Survey. J. Logic Programming 3 (1986), 217–236CrossRefMATHGoogle Scholar
  2. [Bockmayr 86a]
    A. Bockmayr: Conditional rewriting and narrowing as a theoretical framework for logic-functional programming: A Survey. Int. Bericht 10/86, Fak. f. Informatik, Univ. Karlsruhe, 1986Google Scholar
  3. [Bockmayr 86b]
    A. Bockmayr: Narrowing with Inductively Defined Functions. Int. Bericht 25/86, Fak. f. Informatik, Univ. Karlsruhe, 1986Google Scholar
  4. [Bockmayr 87]
    A. Bockmayr: A Note on a Canonical Theory with Undecidable Unification and Matching Problem. J. Autom. Reas. 3 (1987), 379–381MathSciNetMATHGoogle Scholar
  5. [Bosco/Giovannetti/Moiso 87]
    P. G. Bosco, E. Giovannetti, C. Mosio: Refined Strategies for Semantic Unification. TAPSOFT 87, Pisa, 1987, Springer LNCS 250MATHGoogle Scholar
  6. [Büttner/Simonis 87]
    W. Büttner, H. Simonis: Embedding Boolean Equations into Logic Programming. J. Symb. Comput. 4 (1987), 191–205CrossRefMATHGoogle Scholar
  7. [Colmerauer 87]
    A. Colmerauer: Opening the Prolog III Universe. BYTE, Aug. 1987, 177–182Google Scholar
  8. [Clausen/Fortenbacher 87]
    M. Clausen, A.Fortenbacher: Efficient Solution of Linear Diophantine Equations. Int. Ber. 32/87, Fak. f. Informatik, Univ. Karlsruhe, 1987; to appear in J. Symb. Comput.Google Scholar
  9. [DeGroot/Lindstrom 86]
    D. DeGroot, G. Lindstrom: LOGIC PROGRAMMING — Functions, Relations and Equations. Prentice Hall 1986Google Scholar
  10. [Dershowitz/Plaisted 85]
    N. Dershowitz, D. A. Plaisted: Logic Programming cum Applicative Programming. Symp. on Logic Programming, Boston 1985, IEEEGoogle Scholar
  11. [Fay 79]
    M. Fay: First Order Unification in an Equational Theory. 4th Workshop on Automated Deduction, Austin, Texas, 1979Google Scholar
  12. [Fribourg 85]
    L. Fribourg: Handling Function Definitions Through Innermost Superposition and Rewriting. Rewriting Techniques and Applications, Dijon 1985, Springer LNCS 202Google Scholar
  13. [Giovannetti/Moiso 86]
    E. Giovannetti, C. Moiso: A Completeness Result for E-Unification Algorithms Based on Conditional Narrowing. Foundations of Logic and Functional Programming, Trento 1986, Springer LNCS 306Google Scholar
  14. [Huet/Oppen 80]
    G. Huet, D. C. Oppen: Equations and Rewrite Rules, A Survey. Formal Language Theory (Ed. R. V. Book), Academic Press 1980Google Scholar
  15. [Hullot 80]
    J.M. Hullot: Canonical Forms and Unification. 5th Conference on Automated Deduction, Les Arcs 1980, Springer LNCS 87Google Scholar
  16. [Hussmann 85]
    H. Hussmann: Unification in Conditional-Equational Theories. Technical Report MIP-8502, Univ. Passau, Jan.1985 short version: EUROCAL 85, Linz, Springer LNCS 204Google Scholar
  17. [Jaffar/Lassez 87]
    J. Jaffar, J.-L. Lassez: Constraint Logic Programming. POPL 87, München, 1987Google Scholar
  18. [Jaffar/Lassez/Maher 86]
    J. Jaffar, J.-L. Lassez M. S. Maher: Logic Programming Language Scheme. In [DeGroot/Lindstrom 86]Google Scholar
  19. [Jouannaud 83]
    J. P. Jouannaud: Church-Rosser computations with equational term rewriting systems. 8th CAAP, L'Aquila, 1983, Springer LNCS 159Google Scholar
  20. [Jouannaud/Kirchner 86]
    J. P. Jouannaud, H. Kirchner: Completion of a set of rules modulo a set of equations. SIAM J. Comput. 15,4 (1986), 1155–1194MathSciNetCrossRefMATHGoogle Scholar
  21. [Jouannaud/Kirchner/Kirchner 83]
    J. P. Jouannaud, C. Kirchner and H. Kirchner: Incremental construction of unification algorithms in equational theories. 10th ICALP, Barcelona, 1983, Springer LNCS 154Google Scholar
  22. [Jouannaud/Munoz 84]
    J. P. Jouannaud, M. Munoz: Termination of a set of rules modulo a set of equations. 7th CADE, Napa Valley, 1984, Springer LNCS 170Google Scholar
  23. [Kaplan 87]
    S. Kaplan: Simplifying Conditional Term Rewriting Systems: Unification, Termination and Confluence. J. Symb. Comput. 4 (1987), 295–334MathSciNetCrossRefMATHGoogle Scholar
  24. [Käufl 87]
    T. Käufl: Reasoning about systems of linear inequalities. Int. Ber. 16/87, Fak. f. Informatik, Univ. Karlsruhe, 1987Google Scholar
  25. [Kirchner 85]
    C. Kirchner: Methodes et outils de conception systématique d'algorithmes d'unification dans les théories equationnelles. Thèse d'état, Univ. Nancy, 1985Google Scholar
  26. [Martin/Nipkow 86]
    U. Martin, T. Nipkow: Unification in Boolean Rings. CADE-8, Oxford 1986, Springer LNCS 230Google Scholar
  27. [Nipkow 88]
    T. Nipkow: Unification in Primal Algebras. CAAP 88, Nancy 1988, Springer LNCS 299Google Scholar
  28. [Nutt/Réty/Smolka 87]
    W. Nutt, P. Réty, G. Smolka: Basic Narrowing Revisited. SEKI-Report SR 87-07, Univ. Kaiserslautern, 1987Google Scholar
  29. [Padawitz 87]
    P. Padawitz: Strategy-Controlled Reduction and Narrowing. Rewriting Techniques and Applications, Bordeaux 1987, Springer LNCS 256MATHGoogle Scholar
  30. [Peterson/Stickel 81]
    G. E. Peterson, M. Stickel: Complete Sets of Reductions for Some Equational Theories. J.ACM 28 (1981), 233–264MathSciNetCrossRefMATHGoogle Scholar
  31. [Plotkin 72]
    G. D. Plotkin: Building-In Equational Theories. Machine Intelligence 7 (1972)Google Scholar
  32. [Réty et al. 85]
    P. Réty, C. Kirchner, H. Kirchner, P. Lescanne: NARROWER: a new algorithm for unification and its application to Logic Programming. Rewriting Techniques and Applications, Dijon 1985, Springer LNCS 202Google Scholar
  33. [Schmidt-Schauss 88]
    M. Schmidt-Schauss: Unification in a Combination of Arbitrary Disjoint Equational Theories. CADE-9, Argonne 1988, Springer LNCS 310Google Scholar
  34. [Stickel 85]
    M. Stickel: Automated Deduction by Theory Resolution. J. Autom. Reas. 1 (1985), 333–355MathSciNetMATHGoogle Scholar

Copyright information

© Akademie-Verlag Berlin 1988

Authors and Affiliations

  • Alexander Bockmayr
    • 1
  1. 1.Sonderforschungsbereich 314 "Künstliche Intelligenz — Wissensbasierte Systeme" Institut für Logik, Komplexität und DeduktionssystemeUniversität KarlsruheKarlsruhe 1Germany

Personalised recommendations