Uniformly applicative structures, a theory of computability and polyadic functions

  • Patrick Bellot
  • Véronique Jay
Session 9 Semantics
Part of the Lecture Notes in Computer Science book series (LNCS, volume 338)


This article describes a Computability theory developed from the theory of URS described by E.G. Wagner and H.R. Strong and a Combinatory theory named TGE presented by the authors. Its main contribution is that the theory handles polyadicity as a primitive notion and allows a natural representation of functions with variable arity, that is functions which can be applied to sequences of arguments of any length. Aside from classical computability results, we prove a General Abstraction theorem which allows us to construct representations for a large class of functions with variable arity.


computability recursive function algorithmic abstraction definability representability polyadicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H.P. Barendregt, Normed Uniformly Reflexive Structures, in Notes on Logic and Computer Science (LOCOS) 24 (1975).Google Scholar
  2. [2]
    H.P. Barendregt, The λ-calculus, its Syntax and Semantics, Studies in Logic and Foundations of Mathematics, North Holland 103 (Amsterdam, 1981).Google Scholar
  3. [3]
    P. Bellot, A Functional Programming system with Uncurryfied Combinators and its Reduction Machine, in First European Symposium on Programming (ESOP86), Lecture Notes in Computer Science 213 (Saarbrücken, 1986) pp. 82–98.Google Scholar
  4. [4]
    P.Bellot, Sur les sentiers du GRAAL, Etude, Conception et Réalisation d'un Système de Programmation sans Variable, Thèse d'Etat, Université Pierre et Marie Curie (Paris 6), Rapport LITP 86-62 (Paris, 1986).Google Scholar
  5. [5]
    P. Bellot, V. Jay, A theory for Natural Modelisation and Implementation of Functions with Variable Arity, in Third International Conference on Functional Programming Languages and Computer Architecture (FPLCA87), Lecture Notes in Computer Science 274 (Portland, 1987) pp. 212–233.Google Scholar
  6. [6]
    H.B. Curry, R. Feys, Combinatory Logic, Vol. 1, North Holland (Amsterdam, 1958).Google Scholar
  7. [7]
    N.J. Cutland, Computability, an Introduction to Recursive Function Theory, Cambridge University Press (1980).Google Scholar
  8. [8]
    S. Eilenberg, C.C. Elgot, Recursiveness, Academic Press (New-York, 1970).Google Scholar
  9. [9]
    S.C. Kleene, Introduction to Metamathematics, Van Nostrand (1952).Google Scholar
  10. [10]
    G. Kreisel, J. Krivine, Elements of Mathematical Logic, North Holland (Amsterdam, 1967).Google Scholar
  11. [11]
    H. Rogers, Theory of Recursive Functions and Effective Computability, Mc Graw Hill (New-York, 1967).Google Scholar
  12. [12]
    H.R. Strong, Algebraically Generalized Function Theory, in IBM Journal for Research and Development (New-York, 1968) pp. 465–475.Google Scholar
  13. [13]
    H.R. Strong, An Algebraically Approach through URS to General Recursive Function Theory, Doctoral Dissertation, University of Washington (Washington, 1967).Google Scholar
  14. [14]
    H.R. Strong, Construction for Models of Algebraically Generalized Function Theory, in Journal of Symbolic Logic 35 (1970) pp. 401–435.Google Scholar
  15. [15]
    E.G. Wagner, Uniformly Reflexive Structures: An axiomatic approach to Computability, RADC-HAC join Symposium on Logic, Computability and Automata (New-York, 1965).Google Scholar
  16. [16]
    E.G. Wagner, Constructible and Highly Constructible URS, (1974).Google Scholar
  17. [17]
    E.G. Wagner, Functorial Hierarchies of Functional Languages, in Formal Description of Programming Concepts, D. Bjorner ed. (North-Holland, 1983).Google Scholar
  18. [18]
    E.G. Wagner, Uniformly Reflexive Structure: On the Nature of Godelization and Relative Computability, in Trans AMS 144 (1969) pp. 1–41.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Patrick Bellot
    • 1
  • Véronique Jay
    • 2
  1. 1.Centre Scientifique de Paris, Compagnie IBM-FranceParis Cedex 01France
  2. 2.LITP - Paris 6, Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations