Point location in arrangements

Extended abstract
  • Stefan Meiser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 333)


We present a data structure and an algorithm for the point location problem in arrangements of hyperplanes in E d with running time O(d5 logn) and space O(n d+k ) for arbitrary κ>0, where n is the number of hyperplanes. The main result is the d5 factor in the asymptotic expression for the running time, whereas all previously known algorithms depend exponentially on d.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Cla85]
    K.L. Clarkson A Probabilistic Algorithm for the Post Office Problem ACM, STOC (1985), pp. 175–184Google Scholar
  2. [Cla86]
    K.L. Clarkson Further Applications of Random Sampling to Computational Geometry ACM, STOC (1986), pp. 414–423Google Scholar
  3. [DL76]
    D. Dobkin, R.J. Lipton Multidimensional Searching Problems SIAM, J. Comp. Vol. 5 No. 2 (1976), pp. 181–186Google Scholar
  4. [Edl87]
    H. Edelsbrunner Algorithms in Combinatorial Geometry Springer-Verlag (1987)Google Scholar
  5. [Grü67]
    B. Grünbaum Convex Polytopes John Wiley & Sons (1967)Google Scholar
  6. [HW86]
    D. Haussler, E. Welzl Epsilon-Nets and Simplex Range Queries ACM, Proc. of the 2. Symp. on Comp. Geometry (1986), pp. 61–71Google Scholar
  7. [Joh87]
    D.S. Johnson The NP-Completeness Column Academic Press, J. of Algorithms 2 (1987), pp. 285–303Google Scholar
  8. [Meh84]
    K. Mehlhorn Data Structures and Algorithms, Vol. 1–3 Springer-Verlag (1984)Google Scholar
  9. [Mei88]
    S. Meiser Suche in einem Arrangement von Hyperebenen Diplomarbeit, Fachbereich 10, Universität des Saarlandes, D-6600 Saarbrücken, (1988)Google Scholar
  10. [Mey84]
    F. Meyer auf der Heide A Polynomial Linear Search Algorithm for the n-Dimensional Knapsack Problem J. ACM 31 (3), (1984), pp. 668–676Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Stefan Meiser
    • 1
  1. 1.FB10, InformatikUniversität des SaarlandesSaarbrücken

Personalised recommendations