Decision Queue Classifier for Supervised Learning Using Rotated Hyperboxes

  • Jesús Aguilar
  • José Riquelme
  • Miguel Toro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1484)


This article describes a new system for learning rules using rotated hyperboxes as individuals of a genetic algorithm (GA). Our method attempts to find out hyperboxes at any orientation by combining deterministic hill-climbing with GA. Standard techniques, such as C4.5, use hyperboxes that are aligned with the coordinate axes. The system uses the decision queue (DQ) as method of representing the rule set. It means that the obtained rules must be applied in specific order, that is, an example will be classify by the i-rule only if it doesn’t satisfy the condition part of the i-1 previous rules. With this policy, the number of rules is less because the rules could be one inside of another one. We have tested our system on real data from UCI repository. Moreover, we have designed some two-dimensional artificial databases to show graphically the experiments. The results are summarized in the last section.


data mining supervised learning genetic algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aguilar, J. and Riquelme, J. COGITO: Un sistema de Autoaprendizaje basado en Algoritmos Genéticos. III Jornadas de Informática, pp. 79–88, Cádiz, 1997.Google Scholar
  2. [2]
    Blum, A. and Rivest, R. L. Training a 3-node neural network is np-complete. In Proceedengs of the First ADM Workshop on the Computational Learning Theory, pp. 9–18, Cambrige, MA, 1988.Google Scholar
  3. [3]
    Ghozeil, A. and Fogel, D.B. Discovering Patterns in Spatial Data Using Evolutionary Programming. Genetic Program Conference 96.Google Scholar
  4. [4]
    Goldberg, D. Genetic Algorithms in search, optimization and machine learning. Addison-Wesley Publishing Company, Inc. 1989.Google Scholar
  5. [5]
    Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs. Second Edition, Springer-Verlag, 1994.Google Scholar
  6. [6]
    Mitchell, T. Machine Learning. MacGraw-Hill, 1997.Google Scholar
  7. [7]
    Murphy, P. and Aha, D.W. UCI Repository of Machine Learning Databases. Dept. of Information and Computer Science. University of California, Irvine, 1994.Google Scholar
  8. [8]
    Murthy, S. K., Kasif, S. and Salzberg, S. A system for induction of oblique decision trees. Journal of Artificial Intelligence Research, 1994. Morgan Kaufmann Publishers.Google Scholar
  9. [9]
    Quinlan, J. R. C4.5: programs for Machine Learning. Morgan Kaufmann Pub., 1993.Google Scholar
  10. [10]
    Riquelme J. and Aguilar, J. COGITO 2.0: Una herramienta para obtener un Clasificador Jerárquico en Apredizaje Supervisado. Conferencia de la Asociación Española para la Inteligencia Artificial. CAEPIA’97. pp. 489–498, Málaga, 1997.Google Scholar
  11. [11]
    Rivest, R.L. Learning Decision Lists. Machine Learning, 87. pp. 229–246.Google Scholar
  12. [12]
    Simpson, P.K. Fuzzy Min-Max Neural Networks. II. Clustering. IEEE Trans. Fuzzy Systems, Vol. 1:1, 32–45.Google Scholar
  13. [13]
    Venturini, G. SIA: a Supervised Inductive Algorithm with Genetic Search for Learning Attributes based Concepts.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Jesús Aguilar
    • 1
  • José Riquelme
    • 1
  • Miguel Toro
    • 1
  1. 1.Departamento de Lenguajes y Sistemas Informáticos. Facultad de Informática y EstadísticaUniversidad de SevillaSpain

Personalised recommendations