Constructing Specific SOS Semantics for Concurrency via Abstract Interpretation

Extended Abstract
  • Chiara Bodei
  • Pierpaolo Degano
  • Corrado Priami
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1503)


Most of the SOS semantics for concurrent systems can be derived by abstracting on the inference rules of a concrete transition system, namely the proved transition system. Besides the standard interleaving semantics we mechanically derive the causal transition system for CCS, whose definition is particularly dificult and paradigmatic. Its rules are shown to coincide with those presented in the literature. Also, the tree of its computations coincide with that obtained by abstracting the computations of the proved transition system.


Concurrency abstract interpretation SOS semantics causality non-interleaving descriptions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Aceto. A static view of localities. Formal Aspects of Computing, 1992.Google Scholar
  2. 2.
    R.M. Amadio and S. Prasad. Localities and failures. In Proceedings of FST-TCS’94, pages 205–216. Springer-Verlag, 1994.Google Scholar
  3. 3.
    M. Bernardo, L. Donatiello, and R. Gorrieri. Integrating performance and functional analysis of concurrent systems with EMPA. Technical Report UBLCS-95-14, University of Bologna, Laboratory for Computer Science, 1995.Google Scholar
  4. 4.
    C. Bodei, P. Degano, and C. Priami. Mobile processes with a distributed environment. In Proceedings of ICALP’96, LNCS 1099, pages 490–501. Springer-Verlag, 1996. To appear in TCS.Google Scholar
  5. 5.
    C. Bodei and C. Priami. True concurrency via abstract interpretation. In Proceedings of SAS’97, LNCS 1302, pages 202–216, 1997.Google Scholar
  6. 6.
    M. Boreale and D. Sangiorgi. A fully abstract semantics of causality in the π-calculus. In Proceedings of STACS’95, LNCS. Springer Verlag, 1995.Google Scholar
  7. 7.
    G. Boudol and I. Castellani. A non-interleaving semantics for CCS based on proved transitions. Fundamenta Informaticae, XI(4):433–452, 1988.MathSciNetGoogle Scholar
  8. 8.
    G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. A theory of processes with localities. Theoretical Computer Science, 114, 1993.Google Scholar
  9. 9.
    P. Buchholz. On a markovian process algebra. Technical report, Informatik IV, University of Dortmund, 1994.Google Scholar
  10. 10.
    P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and Computation, 2(4):511–547, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpretation. In Proceedings of POPL’92, pages 83–94, 1992.Google Scholar
  12. 12.
    P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to comportment analysis generalizing strictness, termination, projection and PER analysis of functional languages). In Procs. ICCL’94, IEEE, pages 95–112, 1994.Google Scholar
  13. 13.
    P. Cousot and R. Cousot. Compositional and inductive semantic definitions in fixpoint equational, constraint, closure-condition, rule-based and game-theoretic form. In Proceedings of CAV’95, LNCS 939, pages 293–308, 1995.Google Scholar
  14. 14.
    Ph. Darondeau and P. Degano. Causal trees. In Proceedings of ICALP’89, LNCS 372, pages 234–248. Springer-Verlag, 1989.Google Scholar
  15. 15.
    P. Degano, R. De Nicola, and U. Montanari. Partial ordering derivations for CCS. In Proceedings of FCT, LNCS 199, pages 520–533. Springer-Verlag, 1985.Google Scholar
  16. 16.
    P. Degano, J.-V. Loddo, and C. Priami. Mobile processes with local clocks. In Proceedings of Workshop on Analysis and Verification of Multiple-Agent Languages, Stockholm, Sweden, 1996.Google Scholar
  17. 17.
    P. Degano and C. Priami. Proved trees. In Proceedings of ICALP’92, LNCS 623, pages 629–640. Springer-Verlag, 1992.Google Scholar
  18. 18.
    P. Degano and C. Priami. Non interleaving semantics for mobile processes. Extended abstract. In Proceedings of ICALP’95, LNCS 944, pages 660–671. Springer-Verlag, 1995. To appear in TCS.Google Scholar
  19. 19.
    R. Gorrieri, M. Roccetti, and E. Stancapiano. A theory of processes with durational actions. Theoretical Computer Science, (140), 1994.Google Scholar
  20. 20.
    N. Götz, U. Herzog, and M. Rettelbach. TIPP-a language for timed processes and performance evaluation. Technical Report 4/92, IMMD VII, University of Erlangen-Nurnberg, 1992.Google Scholar
  21. 21.
    E. Goubault. Durations for truly concurrent transitions. In Proceedings of ESOP96, LNCS 1058, pages 173–187, 1995.Google Scholar
  22. 22.
    M. Hennessy and T. Regan. A temporal process algebra. Technical Report 2/90, University of Sussex, 1990.Google Scholar
  23. 23.
    J. Hillston. The nature of synchronization. In U. Herzog and M. Rettelbach, editors, Proceedings of PAPM’94, University of Erlangen, 1994.Google Scholar
  24. 24.
    A. Kiehn. Comparing causality and locality based equivalences. Acta Informatica, 31(8):697–718, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    K.G. Larsen and A. Skou. Compositional verification of probabilistic processes. In Proceedings of CONCUR’92, volume 630 of LNCS. Springer-Verlag, 1992.Google Scholar
  26. 26.
    R. Milner. Communication and Concurrency. Prentice-Hall, London, 1989.zbMATHGoogle Scholar
  27. 27.
    R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (I and II). Information and Computation, 100(1):1–77, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    U. Montanari and M. Pistore. Concurrent semantics for the π-calculus. In Electronic Notes in Computer Science, number 1. Elsevier, 1995.Google Scholar
  29. 29.
    U. Montanari and D. Yankelevich. A parametric approach to localities. In Proceedings of ICALP’92, LNCS 623, pages 617–628. Springer-Verlag, 1992.Google Scholar
  30. 30.
    X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras. In Real Time: Theory in Practice, LNCS 600, pages 526–548. Springer-Verlag, 1991.CrossRefGoogle Scholar
  31. 31.
    C. Priami. Stochastic π-calculus. The Computer Journal, 38(6):578–589, 1995.CrossRefGoogle Scholar
  32. 32.
    C. Priami. Enhanced Operational Semantics for Concurrency. PhD thesis, Dipartimento di Informatica, Università di Pisa, March 1996. Available as Tech. Rep. TD-08/96.Google Scholar
  33. 33.
    C. Priami. Interleaving-based partial odering semantics. In Proceedings of Italian Conference on Theoretical Computer Science, pages 264–278, Ravello, November 1995, 1996. World Scientific.Google Scholar
  34. 34.
    R.J. van Glabbeek, S.A. Smolka, B. Steffen, and C.M.N. Tofts. Reactive, generative and stratified models of probabilistic processes. Information and Computation, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Chiara Bodei
    • 1
  • Pierpaolo Degano
    • 1
  • Corrado Priami
    • 2
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly
  2. 2.Istituto PolicattedraUniversità di VeronaVeronaItaly

Personalised recommendations