Advertisement

Equitable Key Escrow with Limited Time Span (or, How to Enforce Time Expiration Cryptographically) Extended Abstract

  • Mike Burmester
  • Yvo Desmedt
  • Jennifer Seberry
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1514)

Abstract

With equitable key escrow the control of society over the individual and the control of the individual over society are shared fairly. In particular, the control is limited to specified time periods. We consider two applications: time controlled key escrow and time controlled auctions with closed bids. In the first the individual cannot be targeted outside the period authorized by the court. In the second the individual cannot withhold his closed bid beyond the bidding period. We propose two protocols, one for each application. We do not require the use of tamper-proof devices.

Key Words

key escrow auctions with closed bids time stamps 

References

  1. 1.
    Adleman, L.M., McCurley K.S.: Open Problems in Number Theoretic Complexity. In: Johnson, D., Nishizeki, T., Nozaki, A., Wilf, H. (eds): Discrete Algorithms and Complexity, Proceedings of the Japan-US Joint Seminar (Perspective in Computing series, 15. Academic Press Inc., Orlando, Florida (1986) 263–286Google Scholar
  2. 2.
    Alon, N., Galil, Z., Yung, M.: Efficient dynamic-resharing “verifiable secret sharing” against mobile adversary. In: Spirakis, P.G. (ed.): Algorithms — ESA’ 95, Third Annual European Symposium, Proceedings (Lecture Notes in Computer Science 979). Springer-Verlag (1995) 523–537Google Scholar
  3. 3.
    Bellare, M., Goldwasser, S.: Verifiable partial key escrow. Proc. 4th ACM Conference on Computer and Communications Security (1997)Google Scholar
  4. 4.
    Beth, T.: Zur Sicherheit der Informationstechnik. Informatik-Spektrum, 13 (1990) 204–215Google Scholar
  5. 5.
    Blackburn, S.R., Burmester, M., Desmedt, Y., Wild, P.R.: Efficient multiplicative sharing schemes. In: Maurer, U. (ed.): Advances in Cryptology — Eurocrypt’ 96, Proceedings (Lecture Notes in Computer Science 1070). Springer-Verlag (1996) 107–118Google Scholar
  6. 6.
    Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number generator. SIAM J. Comput. 15(2) (1986) 364–383zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Boyd, C.: Digital multisignatures. In: Beker, H., Piper, F. (eds): Cryptography and coding. Clarendon Press (1989) 241–246Google Scholar
  8. 8.
    Chaum, D.: Security without identification: transaction systems to make Big Brother obsolete. Commun. ACM, 28(10) (1985) 1030–1044CrossRefGoogle Scholar
  9. 9.
    Chaum, D.: Zero-knowledge undeniable signatures. In: Damgård, I. (ed): Advances in Cryptology, Proc. of Eurocrypt’ 90 (Lecture Notes in Computer Science 473). Springer-Verlag (1991) 458–464Google Scholar
  10. 10.
    Clipper. A proposed federal information processing standard for an escrowed encryption standard (EES). Federal Register, July 30, 1993.Google Scholar
  11. 11.
    Denning, D.E., Branstad, D.K.: A taxonomy of key escrow encryption systems. Communications of the ACM, 39(3), (1996) 24–40CrossRefGoogle Scholar
  12. 12.
    Desmedt, Y., Di Crescenzo, G., Burmester, M.: Multiplicative non-abelian sharing schemes and their application to threshold cryptography. In: Pieprzyk, J., Safavi-Naini, R. (eds.): Advances in Cryptology-Asiacrypt’ 94, Proceedings (Lecture Notes in Computer Science 917). Springer-Verlag (1995) 21–32CrossRefGoogle Scholar
  13. 13.
    De Santis, A., Desmedt, Y., Frankel, Y., Yung M.: How to Share a Function Securely. Proceedings of the twenty-sixth annual ACM Symp. Theory of Computing (STOC) (1994) 522–533Google Scholar
  14. 14.
    Desmedt, Y., Frankel, Y.: Threshold cryptosystems In: Brassard, G. (ed.): Advances in Cryptology-Crypto’ 89, Proceedings (Lecture Notes in Computer Science #435). Springer-Verlag (1990) 307–315CrossRefGoogle Scholar
  15. 15.
    Desmedt, Y.G., Frankel, Y.: Homomorphic zero-knowledge threshold schemes over any finite abelian group. SIAM Journal on Discrete Mathematics 7(4) (1994) 667–679zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inform. Theory, IT-22(6) (1976) 644–654CrossRefMathSciNetGoogle Scholar
  17. 17.
    Frankel, Y.:. A practical protocol for large group oriented networks. In: Quisquater, J.-J., Vandewalle, J. (eds.): Advances in Cryptology-Eurocrypt’ 89, Proceedings (Lecture Notes in Computer Science #434) Springer-Verlag (1990) 56–61Google Scholar
  18. 18.
    Frankel, Y., Desmedt, Y.: Parallel reliable threshold multisignature. Tech. Report TR-92-04-02, Dept. of EE & CS, Univ. of Wisconsin-Milwaukee, April 1992. ftp://ftp.cs.uwm.edu/pub/tech reports/desmedt-rsa-threshold 92.ps.
  19. 19.
    Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M.: Proactive RSA. In: Kaliski, B.S. (ed.): Advances in Cryptology-Crypto’ 97, Proceedings (Lecture Notes in Computer Science 1294). Springer-Verlag (1997) 440–454CrossRefGoogle Scholar
  20. 20.
    Frankel, Y., Gemmell, P., Yung, M.: Witness-based cryptographic program checking and robust function sharing. Proceedings of the Twenty-Eighth Annual ACM Symp. on Theory of Computing (1996) 499–508Google Scholar
  21. 21.
    Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust and efficient sharing of RSA functions. In: Koblitz, N. (ed.): Advances in Cryptology-Crypto’ 96, Proceedings (Lecture Notes in Computer Science 1109). Springer-Verlag (1996) 157–172Google Scholar
  22. 22.
    Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing. In: Coppersmith, D. (ed.): Advances in Cryptology-Crypto’ 95, Proceedings (Lecture Notes in Computer Science #963). Springer-Verlag (1995) 339–352Google Scholar
  23. 23.
    Kilian, J., Leighton, T.: Failsafe key escrow, revisited. In: Coppersmith, D. (ed.): Advances in Cryptology-Crypto’ 95, Proceedings (Lecture Notes in Computer Science #963). Springer-Verlag (1995) 208–221Google Scholar
  24. 24.
    Maurer, U.M., Wolf, Y.: Diffie-Hellman Oracles. In:. Kobliz, N. (ed.): Advances in Cryptology-Crypto’ 96, Proceedings (Lecture Notes in Computer Science 1109). Springer-Verlag (1996) 268–282Google Scholar
  25. 25.
    Micali, S.: Fair public-key cryptosystems. In: Brickell, E.F. (ed.): Advances in Cryptology-Crypto’ 92, Proceedings (Lecture Notes in Computer Science 740). Springer-Verlag (1993) 113–138Google Scholar
  26. 26.
    Ostrovsky, R., Yung, M.: How to Withstand Mobile Virus Attacks. Proceedings of the 10-th Annual ACM Symp. on Principles of Distributed Computing (1991) 51–60Google Scholar
  27. 27.
    Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies, D.W. (ed): Advances in Cryptology, Proc. of Eurocrypt’ 91 (Lecture Notes in Computer Science #547). Springer-Verlag (1991) 522–526Google Scholar
  28. 28.
    Rabin, T.: A simplified approach to threshold and proactive RSA. To appear in the Proceedings of Crypto’ 98.Google Scholar
  29. 29.
    Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and time-release Crypto. http://theory.lcs.mit.edu/~rivest/publications.html (to appear).
  30. 30.
    Simmons, G.J., June 22–24, 1994. Observation made at the Workshop on Key Escrow.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Mike Burmester
    • 1
  • Yvo Desmedt
    • 2
    • 1
  • Jennifer Seberry
    • 3
  1. 1.Information Security GroupRoyal Holloway - University of LondonEghamUK
  2. 2.Center for Cryptography, Computer and Network Security, and Department of EE & CSUniversity of Wisconsin - MilwaukeeUSA
  3. 3.Center for Computer Security ResearchUniversity of WollongongAustralia

Personalised recommendations