Analysis of Distributed-Search Contraction-Based Strategies

  • Maria Paola Bonacina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1489)

Abstract

We present a model of parallel search in theorem proving for forward-reasoning strategies, with contraction and distributed search. We extend to parallel search the bounded-search-spaces approach to the measurement of infinite search spaces, capturing both the advantages of parallelization, e.g., the subdivision of work, and its disadvantages, e.g., the cost of communication, in terms of search space. These tools are applied to compare the search space of a distributed-search contraction-based strategy with that of the corresponding sequential strategy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Anantharaman and M. P. Bonacina. An application of automated equational reasoning to many-valued logic. In M. Okada and S. Kaplan, editors, CTRS-90, volume 516 of LNCS, pages 156–161. Springer Verlag, 1990.Google Scholar
  2. 2.
    S. Anantharaman and J. Hsiang. Automated proofs of the Moufang identities in alternative rings. J. of Automated Reasoning, 6(1):76–109, 1990.MathSciNetCrossRefGoogle Scholar
  3. 3.
    L. Bachmair and H. Ganzinger. Non-clausal resolution and superposition with selection and redundancy criteria. In A. Voronkov, editor, LPAR-92, volume 624 of LNAI, pages 273–284. Springer Verlag, 1992.Google Scholar
  4. 4.
    L. Bachmair and H. Ganzinger. A theory of resolution. Technical Report MPI-I-97-2-005, Max Planck Institut für Informatik, 1997.Google Scholar
  5. 5.
    M. P. Bonacina. On the reconstruction of proofs in distributed theorem proving: a modified Clause-Diffusion method. J. of Symbolic Computation, 21:507–522, 1996.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. P. Bonacina. Experiments with subdivision of search in distributed theorem proving. In M. Hitz and E. Kaltofen, editors, PASCO-97, pages 88–100. ACM Press, 1997.Google Scholar
  7. 7.
    M. P. Bonacina. Distributed contraction-based strategies: model and analysis. Technical Report 98-02, Dept. of Computer Science, University of Iowa, 1998.Google Scholar
  8. 8.
    M. P. Bonacina and J. Hsiang. Parallelization of deduction strategies: an analytical study. J. of Automated Reasoning, 13:1–33, 1994.CrossRefMathSciNetGoogle Scholar
  9. 9.
    M. P. Bonacina and J. Hsiang. Towards a foundation of completion procedures as semidecision procedures. Theoretical Computer Science, 146:199–242, 1995.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    M. P. Bonacina and J. Hsiang. On the modelling of search in theorem proving — Towards a theory of strategy analysis. Information and Computation, forthcoming, 1998.Google Scholar
  11. 11.
    R. Bündgen, M. Göbel, and W. Küchlin. Strategy-compliant multi-threaded term completion. J. of Symbolic Computation, 21:475–506, 1996.MATHCrossRefGoogle Scholar
  12. 12.
    J. Denzinger and S. Schulz. Recording and analyzing knowledge-based distributed deduction processes. J. of Symbolic Computation, 21:523–541, 1996.MATHCrossRefGoogle Scholar
  13. 13.
    N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, pages 243–320. Elsevier, Amsterdam, 1990.Google Scholar
  14. 14.
    D. Kapur and H. Zhang. An overview of RRL: rewrite rule laboratory. In N. Dershowitz, editor, 3rd RTA, volume 355 of LNCS, pages 513–529. Springer Verlag, 1989.Google Scholar
  15. 15.
    C. Kirchner, C. Lynch, and C. Scharff. Fine-grained concurrent completion. In H. Ganzinger, editor, 7th RTA, volume 1103 of LNCS, pages 3–17. Springer Verlag, 1996.Google Scholar
  16. 16.
    A. Leitsch. The Resolution Calculus. Springer, Berlin, 1997.MATHGoogle Scholar
  17. 17.
    W. McCune. Otter 3.0 reference manual and guide. Technical Report 94/6, MCS Div., Argonne Nat. Lab., 1994.Google Scholar
  18. 18.
    W. McCune. Solution of the Robbins problem. J. of Automated Reasoning, 19(3):263–276, 1997.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    D. A. Plaisted. Equational reasoning and term rewriting systems. In D. Gabbay and J. Siekmann, editors, Handbook of Logic in Artificial Intelligence and Logic Programming, pages 273–364. Oxford University Press, New York, 1993.Google Scholar
  20. 20.
    D. A. Plaisted and Y. Zhu. The Efficiency of Theorem Proving Strategies. Friedr. Vieweg & Sohns, 1997.Google Scholar
  21. 21.
    C. B. Suttner and J. Schumann. Parallel automated theorem proving. In L. Kanal, V. Kumar, H. Kitano, and C. B. Suttner, editors, Parallel Processing for Artificial Intelligence. Elsevier, Amsterdam, 1994.Google Scholar
  22. 22.
    A. Urquhart. The complexity of propositional proofs. Bulletin of Symbolic Logic, 1:425–467, 1995.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Maria Paola Bonacina
    • 1
  1. 1.Dept. of Computer ScienceUniversity of IowaIowa CityUSA

Personalised recommendations