A Resolution Calculus for Dynamic Semantics

  • Christof Monz
  • Maarten de Rijke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1489)

Abstract

This paper applies resolution theorem proving to natural language semantics. The aim is to circumvent the computational complexity triggered by natural language ambiguities like pronoun binding, by interleaving pronoun binding with resolution deduction. To this end, disambiguation is only applied to expressions that actually occur during derivations. Given a set of premises and a conclusion, our resolution method only delivers pronoun bindings that are needed to derive the conclusion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. GJW95.
    B. Grosz, A. Joshi, and S. Weinstein. Centering: A framework for modelling the local coherence of discourse. Computational Linguistics, 21(2), 1995.Google Scholar
  2. GS91.
    J. Groenendijk and M. Stokhof. Dynamic Predicate Logic. Linguistics and Philosophy, 14:39–100, 1991.MATHCrossRefGoogle Scholar
  3. Kam81.
    H. Kamp. A theory of truth and semantic representation. In J. Groenendijk et al., editor, Formal Methods in the Study of Language. Mathematical Centre, Amsterdam, 1981.Google Scholar
  4. KK98.
    M. Kohlhase and K. Konrad. Higher-order automated theorem proving for natural language semantics. SEKI-Report SR-98-04, Universität des Saarlandes, 1998.Google Scholar
  5. Koh95.
    M. Kohlhase. Higher-order tableaux. In P. Baumgartner et al., editor, Theorem Proving with Analytic Tableaux and Related Methods, TABLEAUX’95, LNAI, pages 294–309. Springer, 1995.Google Scholar
  6. Lov78.
    D. W. Loveland. Automated Theorem Proving: A Logical Bases. North-Holland, Amsterdam, 1978.Google Scholar
  7. MdR98.
    C. Monz and M. de Rijke. A tableaux calculus for ambiguous quantification. In H. de Swart, editor, Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX’98, LNAI 1397, pages 232–246. Springer, 1998.Google Scholar
  8. MM82.
    A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions on Programming Languages and Systems, 4:258–282, 1982.MATHCrossRefGoogle Scholar
  9. Mon98.
    C. Monz. Dynamic semantics and underspecification. In H. Prade, editor, Proceedings of the 13 th European Conference on Artificial Intelligence. (ECAI’98), pages 201–202. John Wiley & Sons, 1998.Google Scholar
  10. Rey93.
    U. Reyle. Dealing with ambiguities by underspecification: Construction, representation, and deduction. Journal of Semantics, 10(2):123–179, 1993.CrossRefGoogle Scholar
  11. RN95.
    S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 1995.Google Scholar
  12. Rob65.
    J. A. Robinson. A machine oriented logic based on the resolution principle. Journal of the ACM, 12(1):23–41, 1965.MATHCrossRefGoogle Scholar
  13. vE98.
    J. van Eijck. A calculus for dynamic predicate logic. Unpublished manuscript, 1998.Google Scholar
  14. vEJ96.
    J. van Eijck and J. Jaspars. Ambiguity and reasoning. Technical Report CS-R9616, Centrum voor Wiskunde en Informatica, Amsterdam, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Christof Monz
    • 1
  • Maarten de Rijke
    • 1
  1. 1.ILLCUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations