A Note on Partial Consistencies over Continuous Domains

  • Héléne Collavizza
  • FranÇois Delobel
  • Michel Rueher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1520)


This paper investigates the relations among different partial consistencies which have been proposed for pruning the domains of the variables in constraint systems over the real numbers. We establish several properties of the filtering achieved by the algorithms based upon these partial consistencies. Especially, we prove that:
  1. 1)

    2B—Consistency (or Hull consistency) algorithms actually yield a weaker pruning than Box-consistency;

  2. 2)

    3B—Consistency algorithms perform a stronger pruning than Box-consistency.


This paper also provides an analysis of both the capabilities and the inherent limits of the filtering algorithms which achieve these partial consistencies.


Logic Program Interval Analysis Constraint System Interval Arithmetic Continuous Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Benhamou, D. Mc Allester, and P. Van Hentenryck. CLP(Intervals) Revisited. in Proc. Logic Programming: Proceedings of the 1994 International Symposium, MIT Press, (1994).Google Scholar
  2. 2.
    F. Benhamou and W. Older. Applying interval arithmetic to real, integer and boolean constraints. Journal of Logic Programming, (1997).Google Scholar
  3. 3.
    C. Bliek. Computer Methods for Design Automation. PhD thesis, Massachusetts Institute of Technology, 1992.Google Scholar
  4. 4.
    R.P. Brent. A FORTRAN multiple-precision arithmetic package ACM Trans. on Math. Software, 4, no 1, 57–70, 1978.CrossRefGoogle Scholar
  5. 5.
    J.C. Cleary. Logical arithmetic. Future Computing Systems, 2(2):125–149, 1987.Google Scholar
  6. 6.
    B. Faltings. Arc-consistency for continuous variables. Artificial Intelligence, vol. 65, pp. 363–376, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    E. C. Freuder. Synthesizing constraint expressions. Communications of the ACM, 21:958–966, November 1978.Google Scholar
  8. 8.
    L. Granvilliers. On the combination of Box-consistency and Hull-consistency. Workshop “Non binary constraints”, ECAI-98, Brighton, 23–28 August 1998.Google Scholar
  9. 9.
    E. Hansen. Global optimization using interval analysis. Marcel Dekker, NY, 1992.zbMATHGoogle Scholar
  10. 10.
    Hoon Hong and Volker Stahl. Safe starting regions by fixed points and tightening. Computing, 53:323–335, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    E. Hyvönen. Constraint reasoning based on interval arithmetic: the tolerance propagation approach. Artificial Intelligence, vol. 58, pp. 71–112, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    H. Hong, V. Stahl. Safe Starting Regions by Fixed Points and Tightening. Computing, vol. 53, pp 323–335, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    J. H. M. Lee and M. H. van Emden. Interval computation as deduction in CHIP. Journal of Logic Programming, 16: 3–4, pp. 255–276, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    O. Lhomme. Consistency techniques for numeric CSPs. in Proc. IJCAI93, Chambery, (France), pp. 232–238, (August 1993).Google Scholar
  15. 15.
    O. Lhomme. Contribution á la résolution de contraintes sur les réels par propagation d’intervalles. PhD Thesis, University of Nice Sophia Antipolis-CNRS, Route des Colles, B.P. 145, 06903 Sophia Antipolis Cedex, France, 1994.Google Scholar
  16. 16.
    O. Lhomme and M. Rueher. Application des techniques CSP au raisonnement sur les intervalles. RIA (Dunod), vol. 11:3, pp. 283–312, 1997.zbMATHGoogle Scholar
  17. 17.
    A. Mackworth. Consistency in networks of relations. Artificial Intelligence, vol. 8, no. 1, pp. 99–118, 1977.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    U. Montanari. Networks of constraints: Fundamental properties and applications to picture processing. Information Science, 7(2):95–132, 1974.CrossRefMathSciNetGoogle Scholar
  19. 19.
    R. Moore, Interval Analysis. Prentice Hall, 1966.Google Scholar
  20. 20.
    A. Neumaier. Interval methods for systems of equations. Cambridge University Press, 1990.Google Scholar
  21. 21.
    W.J. Older and A. Velino. Extending prolog with constraint arithmetic on real intervals. In Proc. of IEEE Canadian conference on Electrical and Computer Engineering. IEEE Computer Society Press, 1990.Google Scholar
  22. 22.
    W. Older and A. Vellino. Constraint arithmetic on real intervals. in Constraint Logic Programming: Selected Research, eds., Frédéric Benhamou and Alain Colmerauer. MIT Press, (1993).Google Scholar
  23. 23.
    Prologia PrologIV Constraints inside. Parc technologique de Luminy Case 919 13288 Marseille cedex 09 (France), 1996.Google Scholar
  24. 24.
    M. Rueher, C. Solnon. Concurrent Cooperating Solvers within the Reals. Reliable Computing. Kluwer Academic Publishers, Vol. 3:3, pp. 325–333, 1997.zbMATHCrossRefGoogle Scholar
  25. 25.
    E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.Google Scholar
  26. 26.
    P. Van Hentenryck, Y. Deville, and L. Michel. Numerica. A modeling language for global optimization. MIT Press, 1997.Google Scholar
  27. 27.
    P. Van Hentenryck, D. McAllester, and D. Kapur. Solving Polynomial Systems Using a Branch and Prune Aprroach. SIAM Journal (forthcomming).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Héléne Collavizza
    • 1
  • FranÇois Delobel
    • 1
  • Michel Rueher
    • 1
  1. 1.Université de Nice-Sophia-Antipolis, I3S ESSISophia-AntipolisFrance

Personalised recommendations