Advertisement

Some Prospects forEfficient Fixed Parameter Algorithms

  • Rolf Niedermeier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1521)

Abstract

Recent time has seen quite some progress in the development of exponential time algorithms for NP-hard problems, where the base of the exponential term is fairly small. These developments are also tightly related to the theory of fixed parameter tractability. In this incomplete survey, we explain some basic techniques in the design of efficient fixed parameter algorithms, discuss deficiencies of parameterized complexity theory, and try to point out some future research challenges. The focus of this paper is on the design of efficient algorithms and not on a structural theory of parameterized complexity. Moreover, our emphasis will be laid on two exemplifying issues: Vertex Cover and MaxSat problems.

Keywords

Search Tree Vertex Cover Polynomial Time Approximation Scheme Fully Polynomial Time Approximation Scheme Vertex Cover Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. A. Abrahamson, R. G. Downey, and M. R. Fellows. Fixed-parameter tractability and completeness IV: On completeness for W[P] and PSPACE analogues. Annals of Pure and Applied Logic, 73:235–276, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness of approximation problems. In Proceedings of the 33d IEEE Conference on Foundations of Computer Science, pages 14–23, 1992.Google Scholar
  5. 5.
    R. Balasubramanian, M. R. Fellows, and V. Raman. An improved fixed parameter algorithm for vertex cover. Information Processing Letters, 65(3):163–168, 1998.CrossRefMathSciNetGoogle Scholar
  6. 6.
    R. Battiti and M. Protasi. Reactive Search, a history-base heuristic for MAX-SAT. ACM Journal of Experimental Algorithmics, 2:Article 2, 1997.Google Scholar
  7. 7.
    A. Blummer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. J. ACM, 36:929–965, 1989.CrossRefGoogle Scholar
  8. 8.
    H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput., 25:1305–1317, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    R. B. Boppana and M. Sipser. The complexity of finite functions. In J. van Leeuwen, editor, Algorithms and Complexity, volume A of Handbook of Theoretical Computer Science, chapter 14, pages 757–804. Elsevier, 1990.Google Scholar
  10. 10.
    J. F. Buss and J. Goldsmith. Nondeterminism within P. SIAM J. Comput., 22(3):560–572, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    L. Cai and J. Chen. On fixed-parameter tractability and approximability of NP optimization problems. J. Comput. Syst. Sci., 54:465–474, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    D. Coppersmith and S. Winograd. Matrix multiplication via arithmetical progression. J. Symbolic Computations, 9:251–280, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press, 1990.Google Scholar
  14. 14.
    P. Crescenzi and V. Kann. A compendium of NP optimization problems. Available as http://www.nada.kth.se/theory/problemlist.html, Apr. 1997.
  15. 15.
    E. Dantsin, M. Gavrilovich, E. A. Hirsch, and B. Konev. Approximation algorithms for Max SAT: a better performance ratio at the cost of a longer running time. Technical Report PDMI preprint 14/1998, Steklov Institute of Mathematics at St. Petersburg, 1998.Google Scholar
  16. 16.
    R. G. Downey, P. Evans, and M. R. Fellows. Parameterized learning complexity. In 6th Annual Conference on Learning Theory, COLT’93, pages 51–57. ACM Press, 1993.Google Scholar
  17. 17.
    R. G. Downey and M. R. Fellows. Fixed parameter tractability and completeness III. In Complexity Theory: Current Research, Edited by K. Ambos-Spies, S. Homer, and U. Schöning, Cambridge University Press, pages 191–225. 1993.Google Scholar
  18. 18.
    R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness I: Basic results. SIAM Journal on Computing, 24(4):873–921, August 1995.Google Scholar
  19. 19.
    R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness II: On completeness for W[1]. Theoretical Computer Science, 141:109–131, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    R. G. Downey and M. R. Fellows. Parameterized computational feasibility. In P. Clote, J. Remmel (eds.): Feasible Mathematics II, pages 219–244. Boston: BirkhÄuser, 1995.Google Scholar
  21. 21.
    R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, 1998.Google Scholar
  22. 22.
    R. G. Downey, M. R. Fellows, and U. Stege. Parameterized complexity: A framework for systematically confronting computational intractability. In F. Roberts, J. Kratochvíl, and J. NešetŘil, editors, The Future of Discrete Mathematics: Proceedings of the First DIM ATIA Symposium, June 1997, AMS-DIMACS Proceedings Series. AMS, 1998. To appear. Available through http://www.inf.ethz.ch/personal/stege.
  23. 23.
    R.C. Evans. Testing repairable RAMs and mostly good memories. In Proceedings of the IEEE Int. Test Conf., pages 49–55, 1981.Google Scholar
  24. 24.
    U. Feige and M. X. Goemans. Approximating the value of two prover proof systems, with applications to MAX 2SAT and MAX DICUT. In 3d IEEE Israel Symposium on the Theory of Computing and Systems, pages 182–189, 1995.Google Scholar
  25. 25.
    M. R. Fellows and M. A. Langston. Nonconstructive advances in polynomial-time complexity. Information Processing Letters, 26:157–162, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    H. Fernau and R. Niedermeier. Efficient algorithms for constraint bipartite vertex cover problems. Manuscript, July 1998.Google Scholar
  27. 27.
    M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco, 1979.zbMATHGoogle Scholar
  28. 28.
    M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42:1115–1145, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    P. Hansen and B. Jaumard. Algorithms for the maximum satisfiability problem. Computing, 44:279–303, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    N. Hasan and C. L. Liu. Minimum fault coverage in reconfigurable arrays. In 18th Int. Symp. on Fault-Tolerant Computing Systems (FTCS’88), pages 348–353. IEEE Computer Society Press, 1988.Google Scholar
  31. 31.
    N. Hasan and C. L. Liu. Fault covers in reconfigurable PLAs. In 20th Int. Symp. on Fault-Tolerant Computing Systems (FTCS’90), pages 166–173. IEEE Computer Society Press, 1990.Google Scholar
  32. 32.
    J. Hastad. Some optimal inapproximability results.In proceedings of the 29th ACM Symposium on Theory of Computing, pages 1–10, 1997.Google Scholar
  33. 33.
    D. S. Hochbaum, editor. Approximation algorithms for NP-hard problems. Boston, MA: PWS Publishing Company, 1997.Google Scholar
  34. 34.
    D.S Johnson. Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci., 9:256–278, 1974.zbMATHCrossRefGoogle Scholar
  35. 35.
    J. H. Kim and S. M. Reddy. On the design of fault-tolerant two-dimensional systolic arrays for yield enhancement. IEEE Transactions on Computers, 38(4):515–525, Apr. 1989.Google Scholar
  36. 36.
    P. G. Kolaitis and M. N. Thakur. Approximation properties of NP minimization classes. J. Comput. Syst. Sci., 50:391–411, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    S.-Y. Kuo and I.-Y. Chen. Efficient reconfiguration algorithms for degradable VLSI/WSI arrays. IEEE Transactions on Computer-Aided Design, 11(10):1289–1300 1300, 1992.CrossRefGoogle Scholar
  38. 38.
    S.-Y. Kuo and W. Fuchs. Efficient spare allocation for reconfigurable arrays. IEEE Design and Test, 4:24–31, Feb. 1987.Google Scholar
  39. 39.
    C. P. Low and H. W. Leong. A new class of efficient algorithms for reconfiguration of memory arrays. IEEE Transactions on Computers, 45(5):614–618, 1996.zbMATHCrossRefGoogle Scholar
  40. 40.
    M. Mahajan and V. Raman. Parametrizing above guaranteed values: MaxSat and MaxCut. Technical Report TR97-033, ECCC Trier, 1997. To appear in Journal of Algorithms.Google Scholar
  41. 41.
    K. Mehlhorn. Graph algorithms and NP-completeness. Heidelberg: Springer, 1984.zbMATHGoogle Scholar
  42. 42.
    J. NešetŘil and S. Poljak. On the complexity of the subgraph problem. Commentationes Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.zbMATHMathSciNetGoogle Scholar
  43. 43.
    R. Niedermeier and P. Rossmanith. New upper bounds for MaxSat. Technical Report KAM-DIMATIA Series 98–401, Faculty of Mathematics and Physics, Charles University, Prague, July 1998. Submitted for publication.Google Scholar
  44. 44.
    C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.Google Scholar
  45. 45.
    C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. J. Comput. Syst. Sci., 43:425–440, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    C. H. Papadimitriou and M. Yannakakis. On limited nondeterminism and the complexity of the V-C dimension. J. Comput. Syst. Sci., 53:161–170, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    V. Raman. Parameterized complexity. In Proceedings of the 7th National Seminar on Theoretical Computer Science (Chennai, India), pages I-1–I-18, June 1997.Google Scholar
  48. 48.
    N. Robertson and P. D. Seymour. Graph minors⊕-survey. In I. Anderson, editor Surveys in Combinatorics, pages 153–171. Cambridge University Press, 1985.Google Scholar
  49. 49.
    M. D. Smith and P. Mazumder. Generation of minimal vertex covers for row/column allocation in self-repairable arrays. IEEE Transactions on Computers, 45(1):109–115, 1996.zbMATHCrossRefGoogle Scholar
  50. 50.
    J. A. Telle and A. Proskurowski. Algorithms for vertex partitioning problems on partial k-trees. SIAM Journal on Discrete Mathematics, 10(4):529–550, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    L. Trevisan, G. Sorkin, M. Sudan, and D. P. Williamson. Gadgets, approximation, and linear programming. In Proceedings of the 37th IEEE Conference on Foundations of Computer Science, pages 617–626, 1996.Google Scholar
  52. 52.
    L. Youngs and S. Paramanandam. Mapping and repairing embedded-memory defects. IEEE Design and Test, 14(1):18–24, 1997.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Rolf Niedermeier
    • 1
  1. 1.Wilhelm-Schickard-Institut für InformatikUniversitÄt TübingenTübingenFed. Rep. of Germany

Personalised recommendations