Advertisement

Randomized K-Dimensional Binary Search Trees

  • Amalia Duch
  • Vladimir Estivill-Castro
  • Conrado Martínez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1533)

Abstract

We introduce randomized K-dimensional binary search trees (randomized Kd-trees), a variant of K-dimensional binary search trees that allows the efficient maintenance of multidimensional records for any sequence of insertions and deletions; and thus, is fully dynamic. We show that several types of associative queries are efficiently supported by randomized Kd-trees. In particular, a randomized Kd-tree with n records answers exact match queries in expected O(log n) time. Partial match queries are answered in expected O(n1-f(s/K)) time, when s out of K attributes are specified (with 0 < f(s/K) < 1 a real valued function of s/K). Nearest neighbor queries are answered on-line in expected O(log n) time. Our randomized algorithms guarantee that their expected time bounds hold irrespective of the order and number of insertions and deletions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aragon, C. R., Seidel, R.G.: Randomized Search Trees. Algorithmica 16 (1996) 464–497zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bentley, J.L.: Multidimensional binary search trees used for associative retrieval. Comm. of the ACM 18(9) (1975) 509–517zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Flajolet, Ph., Puech, C.: Partial match retrieval of multidimensional data. J. of the ACM 33(2) (1986) 371–407CrossRefMathSciNetGoogle Scholar
  4. 4.
    Friedman, J. H., Bentley, J. L., Finkel, R. A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. on Mathematical Software 3(3) (1977) 209–226zbMATHCrossRefGoogle Scholar
  5. 5.
    Graham, R. L., Knuth, D. E., Patashnik, O.: Concrete Mathematics. Addison-Wesley (1989)Google Scholar
  6. 6.
    Knuth, D.E.: The Art of Computer Programming, vol. 3: Sorting and Searching, 2nd. edition. Addison-Wesley (1998)Google Scholar
  7. 7.
    Mahmoud, H. M.: Evolution of Random Search Trees. Wiley (1992)Google Scholar
  8. 8.
    Overmars, M. H., van Leewen, J.: Dynamic multi-dimensional data structures based on quad-and k-d-trees. Acta Informatica 17(3) (1982) 267–285zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Pugh, W.: Skip list: A probabilistic alternative to balanced trees. Comm. of the ACM 33(6) (1990) 668–676CrossRefMathSciNetGoogle Scholar
  10. 10.
    Raghavan, P., Motwani, R.: Randomized Algorithms. Cambridge Univ. Press (1995)Google Scholar
  11. 11.
    Roura, S., Martínez, C.: Randomized binary search trees. J. of the ACM 45(2) (1998) 288–323zbMATHCrossRefGoogle Scholar
  12. 12.
    Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley (1990)Google Scholar
  13. 13.
    Sproull, R.: Refinements to nearest neighbor searching in k-dimensional trees. Al-gorithmica 6 (1991) 579–589zbMATHMathSciNetGoogle Scholar
  14. 14.
    van Kreveld, M. J., Overmars, M. H.: Divided k-d-trees. Algorithmica 6 (1991) 840–858zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Amalia Duch
    • 1
  • Vladimir Estivill-Castro
    • 2
  • Conrado Martínez
    • 1
  1. 1.Departament de Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaCataloniaSpain
  2. 2.Department of Computer Science and Software EngineeringThe University of NewcastleCallaghanAustralia

Personalised recommendations