The Discrepancy Method

(Invited Presentation)
  • Bernard Chazelle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1533)


Discrepancy theory is the study of irregularities of distributions. A typical question is: given a “complicated” distribution, find a “simple” one that approximates it well. As it turns out, many questions in complexity theory can be reduced to problems of that type. This raises the possibility that the deep mathematical techniques of discrepancy theory might be of utility to theoretical computer scientists. As will be discussed in this talk this is, indeed, the case. We will give several examples of breakthroughs derived through the application of the “discrepancy method.”


Complexity Theory Computational Geometry Discrepancy Theory Communication Complexity Typical Question 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beck, J., Chen, W.W.L. Irregularities of distribution, Cambridge Tracts in Mathematics, 89, Cambridge Univ. Press, Cambridge, 1987.Google Scholar
  2. 2.
    Chazelle, B. An optimal convex hull algorithm in any fixed dimension, Disc. Comput. Geom., 10 (1993), 377–409.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chazelle, B. Lower bounds for off-line range searching, Disc. Comput. Geom., 17 (1997), 53–65.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Chazelle, B. A spectral approach to lower bounds with applications to geometric searching, SIAM J. Comput., 27 (1998), 545–556.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chazelle, B. The Discrepancy Method, book in preparation, 1998.Google Scholar
  6. 6.
    Chazelle, B., Matoušek, J. On linear-time deterministic algorithms for optimization problems in fixed dimension, J. Algorithms, 21 (1996), 579–597.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Drmota, M., Tichy, R.F., Sequences, Discrepancies and Applications, Springer-Verlag, Lecture Notes in Mathematics, Vol. 1651, March 1997.Google Scholar
  8. 8.
    Dyer, M.E. A class of convex programs with applications to computational geometry, Proc. 8th Annu. ACM Symp. Comput. Geom. (1992), 9–15.Google Scholar
  9. 9.
    Even, G., Goldreich, O., Luby, M., Nisan, N., Veličković, B. Efficient approximation of product distributions, Random Structures & Algorithms, 13 (1998), 1–16.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Impagliazzo, R., Zuckerman, D. How to recycle random bits, Proc. 30th Annu. IEEE Symp. Found. Comput. Sci. (1989), 248–253.Google Scholar
  11. 11.
    Kushilevitz, E., Nisan, N. Communication Complexity, Cambridge Univ. Press, 1997Google Scholar
  12. 12.
    Luby, M. Pseudorandomness and Cryptographic Applications, Princeton Computer Science Notes, Princeton University Press, 1996.Google Scholar
  13. 13.
    Matoušek, J. Derandomization in computational geometry, J. Algorithms, 20 (1996), 545–580.CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Matoušek, J. Geometric Discrepancy: An Illustrated Guide, Springer-Verlag, in press.Google Scholar
  15. 15.
    Megiddo, N. Linear programming in linear time when the dimension is fixed, J. ACM, 31 (1984), 114–127.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Niederreiter, H. Random number Generation and Quasi-Monte Carlo Methods, CBMS-NSF, SIAM, Philadelphia, PA, 1992.Google Scholar
  17. 17.
    Razborov, A., Szemerédi, Wigderson, A. Constructing small sets that are uniform in arithmetic progressions, Combinatorics, Probability and Computing, 2 (1993), 513–518.zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Sinclair, A. Algorithms for Random Generation and Counting: A Markov Chain Approach, Progress in Theoretical Computer Science, Birkhauser, 1993.Google Scholar
  19. 19.
    Sipser, M. Expanders, Randomness, or Time versus Space, Proc. 1st Annu. Conf. Structure in Complexity Theory (1986), 325–329.Google Scholar
  20. 20.
    Spencer, J. Ten Lectures on the Probabilistic Method, CBMS-NSF, SIAM, 1987.Google Scholar
  21. 21.
    van der Corput, J.G. Verteilungsfunktionen I. Proc. Nederl. Akad. Wetensch., 38 (1935), 813–821.zbMATHGoogle Scholar
  22. 22.
    van der Corput, J.G. Verteilungsfunktionen II. Proc. Nederl. Akad. Wetensch., 38 (1935), 1058–1066.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Bernard Chazelle
    • 1
    • 2
  1. 1.Princeton UniversityUSA
  2. 2.Ecole PolytechniqueFrance

Personalised recommendations