On Capturing First-Order Topological Properties of Planar Spatial Databases

  • Bart Kuijpers
  • Jan van den Bussche
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1540)


Spatial databases are modeled as closed semi-algebraic subsets of the real plane. First-order logic over the reals (expanded with a symbol to address the database) provides a natural language for expressing properties of such databases. Motivated by applications in geographical information systems, this paper investigates the question of which topological properties can be thus expressed.We introduce a novel, two-tiered logic for expressing topological properties, called CL, which is subsumed by first-order logic over the reals. We put forward the question whether the two logics are actually equivalent (when restricting attention to topological properties). We answer this question affirmatively on the class of “region databases.” We also prove a general result which further illustrates the power of the logic CL.


Geographical Information System Topological Property Child Node Parent Node Spatial Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.Google Scholar
  2. 2.
    M. Benedikt, G. Dong, L. Libkin, and L. Wong. Relational expressive power of constraint query languages. Journal of the ACM, 45(1):1–34, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    M. Benedikt and L. Libkin. On the structure of queries in constraint query languages. In Proceedings 11th IEEE Symposium on Logic in Computer Science, pages 25–34. IEEE Computer Society Press, 1996.Google Scholar
  4. 4.
    J. Bochnak, M. Coste, and M.-F. Roy. Géométrie Algébrique Réelle. Springer-Verlag, 1987.Google Scholar
  5. 5.
    H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.Google Scholar
  6. 6.
    M. Egenhofer and R. Franzosa. Point-set topological spatial relations. Int. J. Geographical Information Systems, 5(2):161–174, 1991.CrossRefGoogle Scholar
  7. 7.
    M. Egenhofer and R. Franzosa. On the equivalence of topological relations. Int. J. Geographical Information Systems, 9(2):133–152, 1995.CrossRefGoogle Scholar
  8. 8.
    M. Egenhofer and D. Mark. Modeling conceptual neighborhoods of topological line-region relations. Int. J. Geographical Information Systems, 9(5):555–565, 1995.CrossRefGoogle Scholar
  9. 9.
    J. Flum and M. Ziegler. Topological Model Theory, volume 769 of Lecture Notes in Mathematics. Springer-Verlag, 1980.Google Scholar
  10. 10.
    S. Grumbach and J. Su. Queries with arithmetical constraints. Theoretical Computer Science, 173(1):151–181, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    C.W. Henson, C.G. Jockusch, Jr., L.A. Rubel, and G. Takeuti. First order topology, volume CXLIII of Dissertationes Mathematicae. Polska Akademia Nauk, 1977.Google Scholar
  12. 12.
    P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query languages. Journal of Computer and System Sciences, 51(1):26–52, August 1995.CrossRefMathSciNetGoogle Scholar
  13. 13.
    E.E. Moise. Geometric Topology in Dimensions 2 and 3, volume 47 of Graduate Texts in Mathematics. Springer, 1977.Google Scholar
  14. 14.
    C.H. Papadimitriou, D. Suciu, and V. Vianu. Topological queries in spatial data-bases. In Proceedings 15th ACM Symposium on Principles of Database Systems, pages 81–92. ACM Press, 1996.Google Scholar
  15. 15.
    J. Paredaens, B. Kuijpers, and J. Van den Bussche. On topological elementary equivalence of spatial databases. In F. Afrati and Ph. Kolaitis, editors, Database Theory—ICDT’97, volume 1186 of Lecture Notes in Computer Science, pages 432–446. Springer, 1997.Google Scholar
  16. 16.
    J. Paredaens, J. Van den Bussche, and D. Van Gucht. First-order queries on finite structures over the reals. SIAM Journal on Computing, 27(6):1747–1763, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    A. Pillay. First order topological structures and theories. Journal of Symbolic Logic, 52(3), September 1987.Google Scholar
  18. 18.
    D. Thompson R. Laurini. Fundamentals of Spatial Information Systems. Number 37 in APIC Series. Academic Press, 1992.Google Scholar
  19. 19.
    W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Language Theory, volume III. Springer, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Bart Kuijpers
    • 1
  • Jan van den Bussche
    • 2
  1. 1.Dept. WNILimburgs Universitair CentrumDiepenbeekBelgium
  2. 2.Dept. Math. & Computer Sci.University of Antwerp (UIA)AntwerpBelgium

Personalised recommendations