Advertisement

Simulation and Scheduling of Real-Time Computer Vision Algorithms

  • F. Torres
  • F. A. Candelas
  • S. T. Puente
  • L. M. Jiménez
  • C. Fernández
  • R. J. Agulló
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1542)

Abstract

A fully integrated development tool for computer vision systems has been built in the framework of this paper. There are many applications that help the user in the design of such systems, using graphical interfaces and function libraries. Even in some cases, the final source code can be generated by these applications. This paper goes a step beyond; it allows the development of computer vision systems from a distributed environment. Besides, and as a distinctive characteristic with regard to other similar utilities, the system is able to automatically optimize task scheduling and assignment, depending on the available hardware.

Keywords

Execution Time Precedence Relation Task Graph Static Schedule Elementary Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben Shneiderman, Designing the User Interface, Addison Wesley, 1998.Google Scholar
  2. 2.
    Lo, V.M., Heuristic Algorithms for Task Assignment in Distributed systems. IEEE Trans. Computers, Vol C-37, N11, Nov, 1988, pages 1384–1397.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Sarkar, V., and J. Hennesy, Compile-Time Partitioning and Scheduling of Parallel Programs. Symp. Compiler Constructrion, ACM Press, New York,N.Y., 1986, pages 17–26.Google Scholar
  4. 4.
    Shirazi, B., M. Wang and G. Pathak, Analysis and Evaluation of Heuristic Methods for Static Task Scheduling. In Parallel and Distributed Computing, Vol,. 10, 1990, pages 222–232.CrossRefGoogle Scholar
  5. 5.
    Stone, H.S. Multiprocessor Scheduling with the Aid of Network Flow Algorithms. IEEE Trans. Software Eng, Vol. SE-3 N1, Jan 1977, pages 85–93.CrossRefGoogle Scholar
  6. 6.
    Phillip A. Laplante, Real-Time Systems Design and Analysis. IEEE Press, New York (1997).Google Scholar
  7. 7.
    F. Torres Medina, Arquitectura paralela para el procesado de imágenes de alta resolución. Aplicación a la inspección de impresiones en tiempo real. PhD. ETSII, Polytechnic University of Madrid, 1995.Google Scholar
  8. 8.
    C.M. Krishna, Kang G. Shin, Real-time systems. McGraw-Hill, New York (1997).zbMATHGoogle Scholar
  9. 9.
    Marr, D. Vision, Ed. Freeman, 1982Google Scholar
  10. 10.
    Mayhew, J.E.W. and Frisby, J.P. Psychophysical and Computation Studies Towars a Theory of Human Stereopsis, Artificial Intelligence, 17, pp. 349–386, 1981.CrossRefGoogle Scholar
  11. 11.
    Nimal Nissanke, Realtime Systems. Prentice Hall, London (1997).Google Scholar
  12. 12.
    Lee, B., A. R. Hurson, and T.-Y Feng, A Vertically Layered Allocation Scheme for Data Flow Systems. In J. Parallel and Distributed Computing. Vol. 11, N3, 1991, pages 175–187.CrossRefGoogle Scholar
  13. 13.
    Wang, M., et al,. Accurate Communication Cost Estimation in Static Task Scheduling. In Proc 24th Ann. Hawaii Int’l Conf. System Sciences. Vol I, IEEE CS Press, Los Alamitos.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • F. Torres
    • 1
  • F. A. Candelas
    • 1
  • S. T. Puente
    • 1
  • L. M. Jiménez
    • 2
  • C. Fernández
    • 2
  • R. J. Agulló
    • 2
  1. 1.Physics, Systems Engineering and Signal Theory DepartmentUniversity of AlicanteSpain
  2. 2.Science and Technology Dept. System Engineering and Automation DivUniversity Miguel HernándezSpain

Personalised recommendations