A Logic for Real-Time Systems Specification Its Algebraic Semantics and Equational Calculus

  • Gabriel A. Baum
  • Marcelo F. Frias
  • Thomas S. E. Maibaum
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1548)


We present a logic for real time systems specification which is an extension of first order dynamic logic by adding (a) arbitrary atomic actions rather than only assignments, (b) variables over actions which allow to specify systems partially, and (c) explicit time. The logic is algebraized using closure fork algebras and a representation theorem for this class is presented. This allows to define an equational (but infinitary) proof system for the algebraization.


Binary Relation Proof System Single Input Object Oriented Programming Predicate Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carvalho, S.E.R., Fiadeiro, J.L. and Haeusler, E.H., A Formal Approach to Real-Time Object Oriented Software. In Proceedings of the Workshop on Real-Time Programming, pp. 91–96, sept/1997, Lyon, France, IFAP/IFIP.Google Scholar
  2. 2.
    Fenton, N. E., Software Metrics. A Rigorous Approach, International Thomson Computer Press, 1995.Google Scholar
  3. 3.
    Fiadeiro, J. L. L. and Maibaum, T. S. E., Temporal Theories as Modularisation Units for Concurrent System Specifications, Formal Aspects of Computing, Vol. 4, No. 3, (1992), 239–272.zbMATHCrossRefGoogle Scholar
  4. 4.
    Fiadeiro, J.L.L. and Maibaum, T. S. E., A Mathematical Toolbox for the Software Architect, in Proc. 8th International Workshop on Software Specification and Design, J. Kramer and A. Wolf, eds., (1995) (IEEE Press), 46–55.Google Scholar
  5. 5.
    Frias M. F., Baum G. A. and Haeberer A. M., Fork Algebras in Algebra, Logic and Computer Science, Fundamenta Informaticae Vol. 32 (1997), pp. 1–25.zbMATHMathSciNetGoogle Scholar
  6. 6.
    Frias, M. F., Haeberer, A.M. and Veloso, P. A. S., A Finite Axiomatization for Fork Algebras, Logic Journal of the IGPL, Vol. 5, No. 3, 311–319, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Frias, M.F. and Orlowska, E., A Proof System for Fork Algebras and its Applications to Reasoning in Logics Based on Intuitionism, Logique et Analyze, vol. 150-151-152, pp. 239–284, 1995.MathSciNetGoogle Scholar
  8. 8.
    Frias, M. F. and Orlowska, E., Equational Reasoning in Non-Classical Logics, Journal of Applied Non Classical Logic, Vol. 8, No. 1–2, 1998.Google Scholar
  9. 9.
    Gries, D., Equational logic as a tool, LNCS 936, Springer-Verlag, 1995, pp. 1–17.Google Scholar
  10. 10.
    Gries, D. and Schneider, F. B., A Logical Approach to Discrete Math., Springer-Verlag, 1993.Google Scholar
  11. 11.
    Kaposi, A. and Myers, M., Systems, Models and Measures, Springer-Verlag London, Formal Approaches to Computing and Information Technology, 1994.zbMATHGoogle Scholar
  12. 12.
    Maddux, R.D., Finitary Algebraic Logic, Zeitschr. f. math. Logik und Grundlagen d. Math. vol. 35, pp. 321–332, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Maddux, R.D., Relation Algebras, Chapter 2 of Relational Methods in Computer Science, Springer Wien New York, 1997.Google Scholar
  14. 14.
    Roberts, F. S., Measurement Theory, with Applications to Decision-Making, Utility and the Social Sciences, Addison-Wesley, 1979.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Gabriel A. Baum
    • 1
  • Marcelo F. Frias
    • 1
    • 2
  • Thomas S. E. Maibaum
    • 3
  1. 1.Departamento de InformáticaUniversidad Nacional de La Plata, LIFIAArgentina
  2. 2.Departamento de ComputaciónUniversidad de Buenos AiresArgentina
  3. 3.Imperial CollegeLondonUK

Personalised recommendations