Scheduling Algebra

  • Rob van Glabbeek
  • Peter Rittgen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1548)


Our goal is to develop an algebraic theory of process scheduling. We specify a syntax for denoting processes composed of actions with given durations. Subsequently, we propose axioms for transforming any specification term of a scheduling problem into a term of all valid schedules. Here a schedule is a process in which all (implementational) choices (e.g. precise timing) are resolved. In particular, we axiomatize an operator restricting attention to the efficient schedules. These schedules are representable as trees, because in an efficient schedule actions start only at time zero or when a resource is released, i.e. upon termination of the action binding a required resource. All further delay is useless. Nevertheless, we do not consider resource constraints explicitly here. We show that a normal form exists for every term of the algebra and establish both soundness of our axioms with respect to a schedule semantics and completeness for efficient processes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, L.; Murphy, D.: Timing and Causality in Process Algebra, Acta Informatica 33, 1996, pp. 317–350MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baeten, J.C.M.; Bergstra, J.A.: Real Time Process Algebra, Formal Aspects of Computing 3(2), 1991, pp. 142–188CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bergstra, J.A.; Klop, J.W.: Process Algebra for Synchronous Communication, Information and Control 60, 1984, pp. 109–137MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chen, X.J.; Corradini, F.; Gorrieri, R.: A Study on the Specification and Verification of Performance Properties, Proceedings of AMAST’ 96, Lecture Notes in Computer Science 1101, Springer, Berlin, 1996, pp. 306–320Google Scholar
  5. 5.
    Clark, W.: The Gantt Chart: A Working Tool of Management, Pitman, London, 1935Google Scholar
  6. 6.
    Corradini, F.: On Performance Congruences for Process Algebras, Information and Computation 145(2), 1998, pp. 191–230MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    French, S.: Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop, Ellis Horwood, Chichester, 1982Google Scholar
  8. 8.
    Gischer, J.L.: The Equational Theory of Pomsets, Theoretical Computer Science 61, 1988, pp. 199–224CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Glabbeek, R.J. van; Rittgen, P.: Scheduling Algebra, Arbeitsberichte des Instituts für Wirtschaftsinformatik Nr. 12, Universität Koblenz-Landau, Germany, 1998 Google Scholar
  10. 10.
    Gorrieri, R.; Roccetti, M.; Stancampiano, E.: A Theory of Processes with Durational Actions, Theoretical Computer Science 140(1), 1995, pp. 73–94MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hoare, C.A.R.: Communicating Sequential Processes, Prentice Hall, Englewood Cliffs, 1985MATHGoogle Scholar
  12. 12.
    Milner, R.: A Calculus of Communicating Systems, Lecture Notes in Computer Science 92, Springer, Berlin, 1980MATHGoogle Scholar
  13. 13.
    Moller, F.; Tofts, C.: A Temporal Calculus of Communicating Systems, in: Baeten, J.C.M.; Klop, J.W.: Proceedings of CONCUR’ 90, Lecture Notes in Computer Science458, Springer, Berlin, 1990, pp. 401–415Google Scholar
  14. 14.
    Reed, G.M.; Roscoe, A.W.: A Timed Model for Communicating Sequential Processes, Theoretical Computer Science 58, 1988, pp. 249–261MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Rob van Glabbeek
    • 1
  • Peter Rittgen
    • 2
  1. 1.Computer Science DepartmentStanford University
  2. 2.Institut für WirschaftsinformatikUniversität Koblenz-LandauKoblenzGermany

Personalised recommendations