Order Independent Homotopic Thinning

  • Vincent Ranwez
  • Pierre Soille
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1568)

Abstract

This article introduces an order independent homotopic thinning for binary pictures. This thinning has the following properties: it does not use homotopic structuring elements, it is independent of the order in which pixels are processed, it is invariant through π/2 rotations, and it takes into account global characteristics of the image through Ronse’s criterion of strong 8-deletability. An algorithm implementing this new thinning is presented and applied to the skeletonisation of binary patterns.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bun69.
    O. Buneman. A grammar for the topological analysis of plane figures. In B. Meltzer and D. Mitchie, editors, Machine Intelligence, volume 5, pages 383–393, Edinburgh, 1969.Google Scholar
  2. CM91.
    J.-M. Chassery and A. Montanvert. Géométrie discrète en analyse d’images. Hermès, Paris, 1991.Google Scholar
  3. Kon95.
    T. Kong. On topology preservation in 2-D and 3-D thinning. International Journal of Pattern Recognition and Artificial Intelligence, 9(5):813–844, 1995.CrossRefGoogle Scholar
  4. KR89.
    T. Kong and A. Rosenfeld. Digital topology: introduction and survey. Computer Vision, Graphics, and Image Processing, 48:357–393, 1989.CrossRefGoogle Scholar
  5. Lan78.
    C. Lantuéjoul. La squelettisation et son application aux mesures topologiques des mosaïques polycristallines. PhD thesis, Ecole des Mines de Paris, 1978.Google Scholar
  6. Mey89.
    F. Meyer. Skeletons and perceptual graphs. Signal Processing, 16:335–363, 1989.CrossRefMathSciNetGoogle Scholar
  7. Ron86.
    C. Ronse. A topological characterization of thinning. Theoretical Computer Science, 43:31–41, 1986.MATHCrossRefMathSciNetGoogle Scholar
  8. Ron88.
    C. Ronse. Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images. Discrete Applied Mathematics, 21:67–79, 1988.MATHCrossRefMathSciNetGoogle Scholar
  9. Ros70.
    A. Rosenfeld. Connectivity in digital pictures. J. Assoc. Comp. Mach., 17(1):146–160, 1970.MATHMathSciNetGoogle Scholar
  10. Sch94.
    M. Schmitt. One pixel thick skeletons. In J. Serra and P. Soille, editors, Mathematical morphology and its applications to image processing, pages 257–264. Kluwer Academic Publishers, 1994.Google Scholar
  11. Ser82.
    J. Serra. Image analysis and mathematical morphology. Academic Press, London, 1982.MATHGoogle Scholar
  12. Vin91.
    L. Vincent. Efficient computation of various types of skeletons. In M. Loew, editor, Medical Imaging V: Image Processing, volume SPIE-1445, pages 297–311, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Vincent Ranwez
    • 1
  • Pierre Soille
    • 2
  1. 1.Dpt. Informatique Fondamentale et ApplicationsLIRMMMontpellierFRANCE
  2. 2.Image Analysis GroupSilsoe Research InstituteBedfordshireUK

Personalised recommendations