Border Map: A Topological Representation for nD Image Analysis

  • Yves Bertrand
  • Christophe Fiorio
  • Yann Pennaneach
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1568)

Abstract

This article presents an algorithm computing a border map of an image that generalizes to the n dimension graph structures used in image analysis. Such a map represents simple and multiple adjacencies, inclusion of regions, as well as the frontier type between two adjacent regions. An algorithm computing a border map, linear to the number of elements of an image, is defined in 2D, then generalized in 3D and in nD.

Keywords

image modeling adjacency graph topology combinatorial maps generalized maps 

References

  1. AAF95.
    Ehoud Ahronovitz, Jean-Pierre Aubert, and Christophe Fiorio. The star-topology: a topology for image analysis. In 5 th Discrete Geometry for Computer Imagery, Proceedings, pages 107–116. Groupe GDR PRC/AMI du CNRS, september 1995.Google Scholar
  2. ADFQ96.
    R. Alaya., E. Dominguez., A.R. Frances, and A. Quintero. Determining the components of the complement of a digital (n-1)-manifold in z n. In S. Miguet, A. Montanvert, and S. Ubéda, editors, 6th International Workshop, DGCI’96, number 1176 in Lecture Notes in Computer Sciences, pages 163–174, Lyon, France, November 1996.Google Scholar
  3. Bru96.
    L. Brun. Segmentation d’images couleur à base Topologique. Thèse de doctorat, Université Bordeaux I, décembre 1996.Google Scholar
  4. Cor75.
    R. Cori. Un code pour les graphes planaires et ses applications. In Astérisqué, volume 27. Soc. Math. de France, Paris, France, 1975.Google Scholar
  5. FG96.
    C. Fiorio and J. Gustedt. Two linear time Union-Find strategies for image processing. Theoretical Computer Science, 154:165–181, 1996.MATHCrossRefMathSciNetGoogle Scholar
  6. Fio95.
    Christophe Fiorio. Approche interpixel en analyse d’images: une topologie et des algorithmes de segmentation. PhD thesis, Université Montpellier II, 24 novembre 1995.Google Scholar
  7. Fio96.
    C. Fiorio. A topologically consistent representation for image analysis: the frontiers topological graph. In S. Ubeda S. Miguet, A. Montanvert, editor, 6th International Workshop, DGCI’96, number 1176 in Lecture Notes in Computer Sciences, pages 151–162, Lyon, France, November 1996.Google Scholar
  8. Fra95.
    J. Franşon. Discrete combinatorial surface. Graphical Models and Image Processing, 57(1):20–26, january 1995.CrossRefGoogle Scholar
  9. Fra96.
    J. Françon. On recent trends in discrete geometry in computer science. In S. Ubeda S. Miguet, A. Montanvert, editor, 6th International Workshop, DGCI’96, number 1176 in Lecture Notes in Computer Sciences, pages 3–16, Lyon, France, November 1996.Google Scholar
  10. Jac70.
    A. Jacques. Constellations et graphes topologiques. In Combinatorial Theory and Applications, pages 657–673, Budapest, 1970.Google Scholar
  11. KIE96.
    Y. Kenmochi, A. Imiya, and N. Ezquerra. Polyedra generation from lattice points. In S. Ubeda S. Miguet, A. Montanvert, editor, 6th International Workshop, DGC’′96, number 1176, pages 127–138, Lyon, France, November 1996.Google Scholar
  12. KKM90.
    E. Khalimsky, R. Kopperman, and P.R. Meyer. Computer graphics and connected topologies on finite ordered sets. Topology and its Applications, 36:1–17, 1990.MATHCrossRefMathSciNetGoogle Scholar
  13. KM95.
    W.G. Kropatsch and H. Macho. Finding the structure of connected components using dual irregular pyramids. In 5 th Discrete Geometry for Computer Imagery, Proceedings, pages 147–158, invited lecture. Groupe GDR PRC/AMI du CNRS, September 1995.Google Scholar
  14. Kov89.
    V.A. Kovalevsky. Finite topology as applied to image analysis. Computer Vision, Graphics, and Image Processing., 46:141–161, 1989.CrossRefGoogle Scholar
  15. KR89.
    T.Y. Kong and A Rosenfeld. Digital topology: introduction and survey. Computer Vision, Graphics, and Image Processing., 48:357–393, 1989.CrossRefGoogle Scholar
  16. Lie89.
    P. Lienhardt. Subdivision of n-dimensional spaces and n-dimensional generalized maps. In 5 th Annual ACM Symposium on Computational Geometry, pages 228–236, Saarbrücken, Germany, 1989.Google Scholar
  17. Lie97.
    Pascal Lienhardt. Aspects in topology-based geometric modeling. In E. Ahronovitz and C. Fiorio, editors, Discrete Geometry for Computer Imagery, volume 1347 of Lecture Notes in Computer Science, pages 33–48. Springer, December 1997. (invited speaker).CrossRefGoogle Scholar
  18. Lie91.
    P. Lienhardt. Topological models for boundary representation: a comparison with n-dimensional generalized maps. C.A.D, 23(1), 91.Google Scholar
  19. LL95.
    V. Lang and P. Lienhardt. Geometric modeling with simplicial sets. In Proc. Pacific Graphics 95, Séoul, Corée, 1995.Google Scholar
  20. May67.
    J.P. May. Simplicial objects in algebraic topology. Van Nostrand Mathematical Studies, 1967.Google Scholar
  21. Pen97.
    Y. Pennaneach. Calcul d’une carte des contours d’une image 3d. Master’s thesis, Université Louis-Pasteur, Strasbourg, 1997.Google Scholar
  22. Ros74.
    A. Rosenfeld. Adjacency in digital pictures. Inform. and Control, 26:24–33, 1974.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Yves Bertrand
    • 1
  • Christophe Fiorio
    • 2
  • Yann Pennaneach
    • 1
  1. 1.LSIITStrasbourg Cedex
  2. 2.LIRMMMontpellier Cedex 5

Personalised recommendations